Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$1.42548624080(45)
\times 10^{24}$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
angular time |
$1.42548624080(45)
\times 10^{24}$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
length |
$4.7549102813(15)
\times 10^{15}$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
angular length |
$4.7549102813(15)
\times 10^{15}$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
area |
$2.2609171783(14)
\times 10^{31}$
$\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
angular area |
$2.2609171783(14)
\times 10^{31}$
$\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
volume |
$1.0750458336(10)
\times 10^{47}$
$\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
wavenumber |
$2.10308910335(66)
\times 10^{-16}$
$\left[\text{m}_\text{p}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
angular wavenumber |
$2.10308910335(66)
\times 10^{-16}$
$\left[\text{m}_\text{p}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
fuel efficiency |
$4.4229837766(28)
\times 10^{-32}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}^{-2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
number density |
$9.3019289849(87)
\times 10^{-48}$
$\left[\text{m}_\text{p}^{3}\right]/\left[\text{m}^{-3}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
frequency |
$7.0151501388(22)
\times 10^{-25}$
$\left[\text{m}_\text{p}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
angular frequency |
$7.0151501388(22)
\times 10^{-25}$
$\left[\text{m}_\text{p}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
frequency drift |
$4.9212331470(31)
\times 10^{-49}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{Hz}
\cdot \text{s}^{-1}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
stagnance |
$2.99792458 \times
10^{8}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ |
$\text{c}$ |
speed |
$3.3356409519815204
\times 10^{-9}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-1}\right]$ |
$\text{c}^{-1}$ |
acceleration |
$2.34000220873(73)
\times 10^{-33}$
$\left[\text{m}_\text{p}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
jerk |
$1.6415466819(10)
\times 10^{-57}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}\cdot
\text{s}^{-3}\right]$ |
$\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
snap |
$1.1515696434(11)
\times 10^{-81}$
$\left[\text{m}_\text{p}^{3}\right]/\left[\text{m}\cdot
\text{s}^{-4}\right]$ |
$\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
crackle |
$8.078433943(10)
\times 10^{-106}$
$\left[\text{m}_\text{p}^{4}\right]/\left[\text{m}\cdot
\text{s}^{-5}\right]$ |
$\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-4}2^{-4}$ |
pop |
$5.6671427000(89)
\times 10^{-130}$
$\left[\text{m}_\text{p}^{5}\right]/\left[\text{m}\cdot
\text{s}^{-6}\right]$ |
$\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-5}2^{-5}$ |
volume flow |
$7.5416079290(47)
\times 10^{22}$
$\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
etendue |
$2.2609171783(14)
\times 10^{31}$
$\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
photon intensity |
$7.0151501388(22)
\times 10^{-25}$
$\left[\text{m}_\text{p}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
photon irradiance |
$6.3049025169(20)
\times 10^{-8}$
$\left[\text{m}_\text{p}\right]/\left[\text{Hz}
\cdot \text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
photon radiance |
$6.3049025169(20)
\times 10^{-8}$
$\left[\text{m}_\text{p}\right]/\left[\text{Hz}
\cdot \text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
Name |
Quantity |
Product |
inertia |
$5.9786374065(19)
\times 10^{26}$
$\left[\text{m}_\text{p}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
mass |
$5.9786374065(19)
\times 10^{26}$
$\left[\text{m}_\text{p}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
mass flow |
$419.41039032(26)$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{J}
\cdot \text{m}^{-2} \cdot
\text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
linear density |
$1.25736071826(79)
\times 10^{11}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
area density |
$2.6443416255(25)
\times 10^{-5}$
$\left[\text{m}_\text{p}^{3}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
density |
$5.5612860582(69)
\times 10^{-21}$
$\left[\text{m}_\text{p}^{4}\right]/\left[\text{kg}\cdot
\text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
specific weight |
$1.3013421660(20)
\times 10^{-53}$
$\left[\text{m}_\text{p}^{5}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-4}2^{-5}$ |
specific volume |
$1.7981452303(22)
\times 10^{20}$
$\left[\text{m}_\text{p}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
force |
$1.39900247365(87)
\times 10^{-6}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{N}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
specific force |
$2.34000220873(73)
\times 10^{-33}$
$\left[\text{m}_\text{p}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$6.1877652444(77)
\times 10^{-38}$
$\left[\text{m}_\text{p}^{4}\right]/\left[\text{Pa}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
compressibility |
$1.6160923379(20)
\times 10^{37}$
$\left[\text{m}_\text{p}^{-4}\right]/\left[\text{Pa}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
viscosity |
$8.8205742172(83)
\times 10^{-14}$
$\left[\text{m}_\text{p}^{3}\right]/\left[\text{Pa}
\cdot \text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
diffusivity |
$1.58606734573(50)
\times 10^{7}$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
rotational inertia |
$1.35172040154(42)
\times 10^{58}$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau^{2}2$ |
impulse |
$1.99425877703(62)
\times 10^{18}$
$\left[\text{m}_\text{p}\right]/\left[\text{N}
\cdot \text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
momentum |
$1.99425877703(62)
\times 10^{18}$
$\left[\text{m}_\text{p}\right]/\left[\text{N}
\cdot \text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
angular momentum |
$9.482521562467288
\times 10^{33}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
yank |
$9.8142123972(92)
\times 10^{-31}$
$\left[\text{m}_\text{p}^{3}\right]/\left[\text{N}
\cdot \text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
energy |
$6.6521312455(21)
\times 10^{9}$
$\left[\text{m}_\text{p}\right]/\left[\text{J}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
specific energy |
$1.1126500560536183
\times 10^{-17}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{kg}^{-1}\right]$ |
$\text{c}^{-2}$ |
action |
$9.482521562467288
\times 10^{33}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
fluence |
$2.9422268579(28)
\times 10^{-22}$
$\left[\text{m}_\text{p}^{3}\right]/\left[\text{N}
\cdot \text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
power |
$4.6665699430(29)
\times 10^{-15}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
power density |
$4.3408102213(68)
\times 10^{-62}$
$\left[\text{m}_\text{p}^{5}\right]/\left[\text{W}
\cdot \text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-4}2^{-5}$ |
irradiance |
$2.0640163151(26)
\times 10^{-46}$
$\left[\text{m}_\text{p}^{4}\right]/\left[\text{W}
\cdot \text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
radiance |
$2.0640163151(26)
\times 10^{-46}$
$\left[\text{m}_\text{p}^{4}\right]/\left[\text{W}
\cdot \text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
radiant intensity |
$4.6665699430(29)
\times 10^{-15}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
spectral flux |
$9.8142123972(92)
\times 10^{-31}$
$\left[\text{m}_\text{p}^{3}\right]/\left[\text{N}
\cdot \text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
spectral exposure |
$419.41039032(26)$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{J}
\cdot \text{m}^{-2} \cdot
\text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
sound exposure |
$5.457964258(12)
\times 10^{-51}$
$\left[\text{m}_\text{p}^{7}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ |
$\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{14}\mu_\text{eu}^{7}\mu_\text{pu}^{-7}\tau^{-5}2^{-7}$ |
impedance |
$8.204835497(15)
\times 10^{-61}$
$\left[\text{m}_\text{p}^{6}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\mu_\text{eu}^{6}\mu_\text{pu}^{-6}\tau^{-5}2^{-6}$ |
specific impedance |
$1.8550453522(23)
\times 10^{-29}$
$\left[\text{m}_\text{p}^{4}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
admittance |
$1.2187934789(23)
\times 10^{60}$
$\left[\text{m}_\text{p}^{-6}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{6}\alpha^{-12}\mu_\text{eu}^{-6}\mu_\text{pu}^{6}\tau^{5}2^{6}$ |
compliance |
$3.3987861858(32)
\times 10^{21}$
$\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}
\cdot \text{N}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
inertance |
$1.1695880110(18)
\times 10^{-36}$
$\left[\text{m}_\text{p}^{5}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-4}2^{-5}$ |
Name |
Quantity |
Product |
charge |
$5.33178061139(41)
\times 10^{17}$
$\left[\text{e}_\text{n}\right]/\left[\text{C}\right]$ |
$\text{e}^{-1}\alpha^{1/2}$ |
charge density |
$4.9595844610(50)
\times 10^{-30}$
$\left[\text{m}_\text{p}^{3}\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{13/2}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
linear charge
density |
$112.132097053(43)$
$\left[\text{m}_\text{p}\cdot
\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
exposure |
$8.9180531429(21)
\times 10^{-10}$
$\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}\right]/\left[\text{kg}^{-1}\text{C}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
mobility |
$0.197883763737(15)$
$\left[\text{e}_\text{n}^{-1}\right]/\left[\text{m}^2
\text{s}^{-1} \text{V}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{e}\cdot
\alpha^{-1/2}\tau$ |
current |
$3.7403241496(15)
\times 10^{-7}$
$\left[\text{m}_\text{p}\cdot
\text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
current density |
$1.6543393033(17)
\times 10^{-38}$
$\left[\text{m}_\text{p}^{3}\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{13/2}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
resistance |
$0.0333564095016(51)$
$\left[\text{e}_\text{n}^{-2}\right]/\left[\Omega\right]$ |
$\hbar^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
conductance |
$29.9792458163(46)$
$\left[\text{e}_\text{n}^{2}\right]/\left[\text{S}\right]$ |
$\hbar\cdot
\text{e}^{-2}\alpha\cdot \tau^{-1}$ |
resistivity |
$1.58606734486(74)
\times 10^{14}$
$\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\Omega
\cdot \text{m}\right]$ |
$\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau^{2}2$ |
conductivity |
$6.3049025203(29)
\times 10^{-15}$
$\left[\text{m}_\text{p}\cdot
\text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot
\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
capacitance |
$4.27350024207(70)
\times 10^{25}$
$\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{2}\right]/\left[\text{F}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-2}\text{R}_{\infty}\cdot
\alpha^{-1}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
inductance |
$4.7549102787(22)
\times 10^{22}$
$\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau^{2}2$ |
reluctance |
$2.10308910450(98)
\times 10^{-23}$
$\left[\text{m}_\text{p}\cdot
\text{e}_\text{n}^{2}\right]/\left[\text{H}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
permeance |
$4.7549102787(22)
\times 10^{22}$
$\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau^{2}2$ |
permittivity |
$8.9875517923(14)
\times 10^{9}$
$\left[\text{e}_\text{n}^{2}\right]/\left[\text{F}
\cdot \text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-2}\alpha\cdot
\tau^{-1}$ |
permeability |
$9.9999999945(15)
\times 10^{6}$
$\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H}
\cdot \text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\alpha^{-1}\tau$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$1.7981452303(22)
\times 10^{20}$
$\left[\text{m}_\text{p}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$3.74032414757(89)$
$\left[\text{m}_\text{p}\cdot
\text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{3/2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
electric potential |
$1.24763784003(30)
\times 10^{-8}$
$\left[\text{m}_\text{p}\cdot
\text{e}_\text{n}^{-1}\right]/\left[\text{V}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{3/2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
magnetic potential |
$3.7403241496(15)
\times 10^{-7}$
$\left[\text{m}_\text{p}\cdot
\text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
electric field |
$2.6238935463(14)
\times 10^{-24}$
$\left[\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}\right]/\left[\text{V}
\cdot \text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{-2}\alpha^{7/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
magnetic field |
$7.8662349620(55)
\times 10^{-23}$
$\left[\text{m}_\text{p}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
electric flux |
$5.93240599289(45)
\times 10^{7}$
$\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V}
\cdot \text{m}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\alpha^{-1/2}\tau$ |
magnetic flux |
$1.77849057446(14)
\times 10^{16}$
$\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb}\right]$ |
$\hbar^{-1}\text{e}\cdot
\alpha^{-1/2}\tau$ |
electric
displacement |
$2.3582379145(17)
\times 10^{-14}$
$\left[\text{m}_\text{p}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
magnetic flux
density |
$7.8662349577(43)
\times 10^{-16}$
$\left[\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}\right]/\left[\text{T}\right]$ |
$\hbar^{-1}\text{e}\cdot
\text{R}_{\infty}^{-2}\alpha^{7/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
electric dipole
moment |
$2.53521384467(60)
\times 10^{33}$
$\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}\right]/\left[\text{m}\cdot
\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
magnetic dipole
moment |
$8.4565631223(20)
\times 10^{24}$
$\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}\right]/\left[\text{J}
\cdot \text{T}^{-1}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
electric
polarizability |
$9.6620301088(76)
\times 10^{56}$
$\left[\text{m}_\text{p}^{-3}\text{e}_\text{n}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-2}\text{R}_{\infty}^{3}\alpha^{-5}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
magnetic
polarizability |
$1.0750458336(10)
\times 10^{47}$
$\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
magnetic moment |
$8.4565631177(33)
\times 10^{31}$
$\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-1}\right]/\left[\text{Wb}
\cdot \text{m}\right]$ |
$\hbar^{-1}\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-5/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau^{2}2$ |
specific
magnetization |
$7.0698194093(49)
\times 10^{-6}$
$\left[\text{m}_\text{p}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]$ |
$\text{c}\cdot
\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
pole strength |
$1.77849057543(14)
\times 10^{9}$
$\left[\text{e}_\text{n}\right]/\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}$ |
Name |
Quantity |
Product |
temperature |
$9.1842583520(29)
\times 10^{-14}$
$\left[\text{m}_\text{p}\right]/\left[\text{K}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
entropy |
$7.24297051603992
\times 10^{22}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}$ |
specific entropy |
$0.000121147512778(38)$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{J}
\cdot \text{K}^{-1} \text{kg}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
volume heat capacity |
$6.7373597380(63)
\times 10^{-25}$
$\left[\text{m}_\text{p}^{3}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
thermal conductivity |
$1.06859062769(67)
\times 10^{-17}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{W}
\cdot \text{m}^{-1} \text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
thermal conductance |
$0.050810525621(16)$
$\left[\text{m}_\text{p}\right]/\left[\text{W}
\cdot \text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
thermal resistivity |
$9.3581206319(58)
\times 10^{16}$
$\left[\text{m}_\text{p}^{-2}\right]/\left[\text{K}
\cdot \text{m} \cdot \text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
thermal resistance |
$19.6809615287(61)$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{K}
\cdot \text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
thermal expansion |
$1.08881954500(34)
\times 10^{13}$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
lapse rate |
$1.9315313662(12)
\times 10^{-29}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}^{-1}\text{K}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
Name |
Quantity |
Product |
molar mass |
$1000.000000340000000(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molality |
$0.00099999999966(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar amount |
$5.97863740449(31)
\times 10^{23}$
$\left[\text{m}_\text{p}\right]/\left[\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\mu_\text{pu}^{-1}$ |
molarity |
$5.5612860563(53)
\times 10^{-24}$
$\left[\text{m}_\text{p}^{4}\right]/\left[\text{m}^{-3}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-4}\tau^{-3}2^{-3}$ |
molar volume |
$1.7981452309(17)
\times 10^{23}$
$\left[\text{m}_\text{p}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{4}\tau^{3}2^{3}$ |
molar entropy |
$0.1211475128196(64)$
$\left[\text{m}_\text{p}^{-1}\right]/\left[\text{J}
\cdot \text{K}^{-1} \text{mol}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{pu}$ |
molar energy |
$1.11265005644(34)
\times 10^{-14}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molar conductivity |
$2.38429954040(45)
\times 10^{-7}$
$\left[\text{m}_\text{p}^{-2}\text{e}_\text{n}^{2}\right]/\left[\text{S}
\cdot \text{m}^2 \text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}\cdot
\alpha^{-1}\mu_\text{eu}^{-1}\mu_\text{pu}^{2}2$ |
molar susceptibility |
$1.7981452309(17)
\times 10^{23}$
$\left[\text{m}_\text{p}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{4}\tau^{3}2^{3}$ |
catalysis |
$0.41941039018(14)$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{kat}\right]$ |
$\text{N}_\text{A}\cdot
\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-2}\tau^{-1}2^{-1}$ |
specificity |
$0.126142587663(80)$
$\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{3}\tau^{2}2^{2}$ |
diffusion flux |
$3.7694726019(12)
\times 10^{16}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-2}\tau^{-1}2^{-1}$ |
Name |
Quantity |
Product |
luminous flux |
$6.8322626869(43)
\times 10^{-18}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{cd}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
luminous intensity |
$6.8322626869(43)
\times 10^{-18}$
$\left[\text{m}_\text{p}^{2}\right]/\left[\text{cd}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
luminance |
$3.0218987022(38)
\times 10^{-49}$
$\left[\text{m}_\text{p}^{4}\right]/\left[\text{lx}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
illuminance |
$3.0218987022(38)
\times 10^{-49}$
$\left[\text{m}_\text{p}^{4}\right]/\left[\text{lx}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
luminous energy |
$9.7392964537(30)
\times 10^{6}$
$\left[\text{m}_\text{p}\right]/\left[\text{s}\cdot
\text{lm}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
luminous exposure |
$4.3076750211(40)
\times 10^{-25}$
$\left[\text{m}_\text{p}^{3}\right]/\left[\text{lx}
\cdot \text{s}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
luminous efficacy |
$0.0014640866354352104$
$\left[\mathbb{1}\right]/\left[\text{lm} \cdot
\text{W}^{-1}\right]$ |
$\text{K}_\text{cd}^{-1}$ |
|
Unified |
SI2019 |
QCDGauss |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{s}$ |
$\text{m}_\text{p}^{-1}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{s}$ |
$\text{m}_\text{p}^{-1}$ |
length |
$\text{L}$ |
$\text{m}$ |
$\text{m}_\text{p}^{-1}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{m}$ |
$\text{m}_\text{p}^{-1}$ |
area |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
$\text{m}_\text{p}^{-2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{m}^{2}$ |
$\text{m}_\text{p}^{-2}$ |
volume |
$\text{L}^{3}$ |
$\text{m}^{3}$ |
$\text{m}_\text{p}^{-3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{m}^{-1}$ |
$\text{m}_\text{p}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{m}^{-1}$ |
$\text{m}_\text{p}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{m}^{-2}$ |
$\text{m}_\text{p}^{2}$ |
number density |
$\text{L}^{-3}$ |
$\text{m}^{-3}$ |
$\text{m}_\text{p}^{3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{Hz}$ |
$\text{m}_\text{p}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{Hz}$ |
$\text{m}_\text{p}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
$\text{m}_\text{p}^{2}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{m}^{-1}\text{s}$ |
$\mathbb{1}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
$\mathbb{1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{m}_\text{p}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
$\text{m}_\text{p}^{2}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
$\text{m}_\text{p}^{3}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
$\text{m}_\text{p}^{4}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
$\text{m}_\text{p}^{5}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
$\text{m}_\text{p}^{-2}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{m}^{2}$ |
$\text{m}_\text{p}^{-2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{Hz}$ |
$\text{m}_\text{p}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{m}_\text{p}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{m}_\text{p}$ |
|
Unified |
SI2019 |
QCDGauss |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{kg}$ |
$\text{m}_\text{p}$ |
mass |
$\text{M}$ |
$\text{kg}$ |
$\text{m}_\text{p}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{m}_\text{p}^{2}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
$\text{m}_\text{p}^{2}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
$\text{m}_\text{p}^{3}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
$\text{m}_\text{p}^{4}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
$\text{m}_\text{p}^{5}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{m}_\text{p}^{-4}$ |
force |
$\text{F}$ |
$\text{N}$ |
$\text{m}_\text{p}^{2}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{m}_\text{p}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{Pa}$ |
$\text{m}_\text{p}^{4}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{Pa}^{-1}$ |
$\text{m}_\text{p}^{-4}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{Pa} \cdot
\text{s}$ |
$\text{m}_\text{p}^{3}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
$\text{m}_\text{p}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
$\text{m}_\text{p}^{-1}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{N} \cdot
\text{s}$ |
$\text{m}_\text{p}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
$\text{m}_\text{p}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
$\mathbb{1}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{m}_\text{p}^{3}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{J}$ |
$\text{m}_\text{p}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
$\mathbb{1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{J} \cdot
\text{s}$ |
$\mathbb{1}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
$\text{m}_\text{p}^{3}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{W}$ |
$\text{m}_\text{p}^{2}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
$\text{m}_\text{p}^{5}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{m}_\text{p}^{4}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{m}_\text{p}^{4}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{W}$ |
$\text{m}_\text{p}^{2}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{m}_\text{p}^{3}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{m}_\text{p}^{2}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
$\text{m}_\text{p}^{7}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
$\text{m}_\text{p}^{6}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
$\text{m}_\text{p}^{4}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
$\text{m}_\text{p}^{-6}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
$\text{m}_\text{p}^{-3}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
$\text{m}_\text{p}^{5}$ |
|
Unified |
SI2019 |
QCDGauss |
charge |
$\text{Q}$ |
$\text{C}$ |
$\text{e}_\text{n}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
$\text{m}_\text{p}^{3}\text{e}_\text{n}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
$\text{m}_\text{p}\cdot
\text{e}_\text{n}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{kg}^{-1}\text{C}$ |
$\text{m}_\text{p}^{-1}\text{e}_\text{n}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
$\text{e}_\text{n}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
$\text{m}_\text{p}\cdot
\text{e}_\text{n}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
$\text{m}_\text{p}^{3}\text{e}_\text{n}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\Omega$ |
$\text{e}_\text{n}^{-2}$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S}$ |
$\text{e}_\text{n}^{2}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
$\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
$\text{m}_\text{p}\cdot
\text{e}_\text{n}^{2}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{F}$ |
$\text{m}_\text{p}^{-1}\text{e}_\text{n}^{2}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
$\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{H}^{-1}$ |
$\text{m}_\text{p}\cdot
\text{e}_\text{n}^{2}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H}$ |
$\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
$\text{e}_\text{n}^{2}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
$\text{e}_\text{n}^{-2}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{m}_\text{p}^{-4}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
$\text{m}_\text{p}\cdot
\text{e}_\text{n}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{V}$ |
$\text{m}_\text{p}\cdot
\text{e}_\text{n}^{-1}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{s}^{-1}\text{C}$ |
$\text{m}_\text{p}\cdot
\text{e}_\text{n}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
$\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
$\text{m}_\text{p}^{2}\text{e}_\text{n}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
$\text{e}_\text{n}^{-1}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb}$ |
$\text{e}_\text{n}^{-1}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{m}^{-2}\text{C}$ |
$\text{m}_\text{p}^{2}\text{e}_\text{n}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}$ |
$\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
$\text{m}_\text{p}^{-1}\text{e}_\text{n}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
$\text{m}_\text{p}^{-1}\text{e}_\text{n}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
$\text{m}_\text{p}^{-3}\text{e}_\text{n}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}$ |
$\text{m}_\text{p}^{-3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}$ |
$\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-1}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
$\text{m}_\text{p}^{2}\text{e}_\text{n}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
$\text{e}_\text{n}$ |
|
Unified |
SI2019 |
QCDGauss |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\text{kg}^{-1}\text{mol}$ |
$\mathbb{1}$ |
molar amount |
$\text{N}$ |
$\text{mol}$ |
$\text{m}_\text{p}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{m}^{-3}\text{mol}$ |
$\text{m}_\text{p}^{4}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{m}_\text{p}^{-4}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
$\text{m}_\text{p}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
$\text{m}_\text{p}^{-2}\text{e}_\text{n}^{2}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{m}_\text{p}^{-4}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{kat}$ |
$\text{m}_\text{p}^{2}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
$\text{m}_\text{p}^{-3}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |
$\text{m}_\text{p}^{2}$ |