SI2019 -> QCDGauss

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $1.42548624080(45) \times 10^{24}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
angular time $1.42548624080(45) \times 10^{24}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
length $4.7549102813(15) \times 10^{15}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
angular length $4.7549102813(15) \times 10^{15}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
area $2.2609171783(14) \times 10^{31}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$
angular area $2.2609171783(14) \times 10^{31}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$
volume $1.0750458336(10) \times 10^{47}$ $\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$
wavenumber $2.10308910335(66) \times 10^{-16}$ $\left[\text{m}_\text{p}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
angular wavenumber $2.10308910335(66) \times 10^{-16}$ $\left[\text{m}_\text{p}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
fuel efficiency $4.4229837766(28) \times 10^{-32}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}^{-2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
number density $9.3019289849(87) \times 10^{-48}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{m}^{-3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$
frequency $7.0151501388(22) \times 10^{-25}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
angular frequency $7.0151501388(22) \times 10^{-25}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
frequency drift $4.9212331470(31) \times 10^{-49}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
stagnance $2.99792458 \times 10^{8}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ $\text{c}$
speed $3.3356409519815204 \times 10^{-9}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}^{-1}$
acceleration $2.34000220873(73) \times 10^{-33}$ $\left[\text{m}_\text{p}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
jerk $1.6415466819(10) \times 10^{-57}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ $\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
snap $1.1515696434(11) \times 10^{-81}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ $\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$
crackle $8.078433943(10) \times 10^{-106}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ $\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-4}2^{-4}$
pop $5.6671427000(89) \times 10^{-130}$ $\left[\text{m}_\text{p}^{5}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ $\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-5}2^{-5}$
volume flow $7.5416079290(47) \times 10^{22}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$
etendue $2.2609171783(14) \times 10^{31}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$
photon intensity $7.0151501388(22) \times 10^{-25}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
photon irradiance $6.3049025169(20) \times 10^{-8}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
photon radiance $6.3049025169(20) \times 10^{-8}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$

Mechanical Ratios

Name Quantity Product
inertia $5.9786374065(19) \times 10^{26}$ $\left[\text{m}_\text{p}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$
mass $5.9786374065(19) \times 10^{26}$ $\left[\text{m}_\text{p}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$
mass flow $419.41039032(26)$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
linear density $1.25736071826(79) \times 10^{11}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
area density $2.6443416255(25) \times 10^{-5}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$
density $5.5612860582(69) \times 10^{-21}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
specific weight $1.3013421660(20) \times 10^{-53}$ $\left[\text{m}_\text{p}^{5}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-4}2^{-5}$
specific volume $1.7981452303(22) \times 10^{20}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
force $1.39900247365(87) \times 10^{-6}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{N}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
specific force $2.34000220873(73) \times 10^{-33}$ $\left[\text{m}_\text{p}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $6.1877652444(77) \times 10^{-38}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{Pa}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
compressibility $1.6160923379(20) \times 10^{37}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{Pa}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
viscosity $8.8205742172(83) \times 10^{-14}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{Pa} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$
diffusivity $1.58606734573(50) \times 10^{7}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
rotational inertia $1.35172040154(42) \times 10^{58}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$
impulse $1.99425877703(62) \times 10^{18}$ $\left[\text{m}_\text{p}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$
momentum $1.99425877703(62) \times 10^{18}$ $\left[\text{m}_\text{p}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$
angular momentum $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
yank $9.8142123972(92) \times 10^{-31}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$
energy $6.6521312455(21) \times 10^{9}$ $\left[\text{m}_\text{p}\right]/\left[\text{J}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$
specific energy $1.1126500560536183 \times 10^{-17}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ $\text{c}^{-2}$
action $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
fluence $2.9422268579(28) \times 10^{-22}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$
power $4.6665699430(29) \times 10^{-15}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
power density $4.3408102213(68) \times 10^{-62}$ $\left[\text{m}_\text{p}^{5}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-4}2^{-5}$
irradiance $2.0640163151(26) \times 10^{-46}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
radiance $2.0640163151(26) \times 10^{-46}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
radiant intensity $4.6665699430(29) \times 10^{-15}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
spectral flux $9.8142123972(92) \times 10^{-31}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$
spectral exposure $419.41039032(26)$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
sound exposure $5.457964258(12) \times 10^{-51}$ $\left[\text{m}_\text{p}^{7}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ $\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{14}\mu_\text{eu}^{7}\mu_\text{pu}^{-7}\tau^{-5}2^{-7}$
impedance $8.204835497(15) \times 10^{-61}$ $\left[\text{m}_\text{p}^{6}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\mu_\text{eu}^{6}\mu_\text{pu}^{-6}\tau^{-5}2^{-6}$
specific impedance $1.8550453522(23) \times 10^{-29}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
admittance $1.2187934789(23) \times 10^{60}$ $\left[\text{m}_\text{p}^{-6}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-12}\mu_\text{eu}^{-6}\mu_\text{pu}^{6}\tau^{5}2^{6}$
compliance $3.3987861858(32) \times 10^{21}$ $\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$
inertance $1.1695880110(18) \times 10^{-36}$ $\left[\text{m}_\text{p}^{5}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-4}2^{-5}$

Electromagnetic Ratios

Name Quantity Product
charge $5.33178061139(41) \times 10^{17}$ $\left[\text{e}_\text{n}\right]/\left[\text{C}\right]$ $\text{e}^{-1}\alpha^{1/2}$
charge density $4.9595844610(50) \times 10^{-30}$ $\left[\text{m}_\text{p}^{3}\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{13/2}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$
linear charge density $112.132097053(43)$ $\left[\text{m}_\text{p}\cdot \text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
exposure $8.9180531429(21) \times 10^{-10}$ $\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}\right]/\left[\text{kg}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
mobility $0.197883763737(15)$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{e}\cdot \alpha^{-1/2}\tau$
current $3.7403241496(15) \times 10^{-7}$ $\left[\text{m}_\text{p}\cdot \text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
current density $1.6543393033(17) \times 10^{-38}$ $\left[\text{m}_\text{p}^{3}\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{13/2}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$
resistance $0.0333564095016(51)$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\Omega\right]$ $\hbar^{-1}\text{e}^{2}\alpha^{-1}\tau$
conductance $29.9792458163(46)$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{S}\right]$ $\hbar\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$
resistivity $1.58606734486(74) \times 10^{14}$ $\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\Omega \cdot \text{m}\right]$ $\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$
conductivity $6.3049025203(29) \times 10^{-15}$ $\left[\text{m}_\text{p}\cdot \text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-2}2^{-1}$
capacitance $4.27350024207(70) \times 10^{25}$ $\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{2}\right]/\left[\text{F}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}\cdot \alpha^{-1}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
inductance $4.7549102787(22) \times 10^{22}$ $\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$
reluctance $2.10308910450(98) \times 10^{-23}$ $\left[\text{m}_\text{p}\cdot \text{e}_\text{n}^{2}\right]/\left[\text{H}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-2}2^{-1}$
permeance $4.7549102787(22) \times 10^{22}$ $\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$
permittivity $8.9875517923(14) \times 10^{9}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$
permeability $9.9999999945(15) \times 10^{6}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha^{-1}\tau$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $1.7981452303(22) \times 10^{20}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $3.74032414757(89)$ $\left[\text{m}_\text{p}\cdot \text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$
electric potential $1.24763784003(30) \times 10^{-8}$ $\left[\text{m}_\text{p}\cdot \text{e}_\text{n}^{-1}\right]/\left[\text{V}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$
magnetic potential $3.7403241496(15) \times 10^{-7}$ $\left[\text{m}_\text{p}\cdot \text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
electric field $2.6238935463(14) \times 10^{-24}$ $\left[\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha^{7/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
magnetic field $7.8662349620(55) \times 10^{-23}$ $\left[\text{m}_\text{p}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
electric flux $5.93240599289(45) \times 10^{7}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V} \cdot \text{m}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \alpha^{-1/2}\tau$
magnetic flux $1.77849057446(14) \times 10^{16}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb}\right]$ $\hbar^{-1}\text{e}\cdot \alpha^{-1/2}\tau$
electric displacement $2.3582379145(17) \times 10^{-14}$ $\left[\text{m}_\text{p}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
magnetic flux density $7.8662349577(43) \times 10^{-16}$ $\left[\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}\right]/\left[\text{T}\right]$ $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha^{7/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
electric dipole moment $2.53521384467(60) \times 10^{33}$ $\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}\right]/\left[\text{m}\cdot \text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
magnetic dipole moment $8.4565631223(20) \times 10^{24}$ $\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
electric polarizability $9.6620301088(76) \times 10^{56}$ $\left[\text{m}_\text{p}^{-3}\text{e}_\text{n}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}^{3}\alpha^{-5}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$
magnetic polarizability $1.0750458336(10) \times 10^{47}$ $\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$
magnetic moment $8.4565631177(33) \times 10^{31}$ $\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$
specific magnetization $7.0698194093(49) \times 10^{-6}$ $\left[\text{m}_\text{p}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ $\text{c}\cdot \text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
pole strength $1.77849057543(14) \times 10^{9}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $9.1842583520(29) \times 10^{-14}$ $\left[\text{m}_\text{p}\right]/\left[\text{K}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$
entropy $7.24297051603992 \times 10^{22}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}$
specific entropy $0.000121147512778(38)$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
volume heat capacity $6.7373597380(63) \times 10^{-25}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$
thermal conductivity $1.06859062769(67) \times 10^{-17}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
thermal conductance $0.050810525621(16)$ $\left[\text{m}_\text{p}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
thermal resistivity $9.3581206319(58) \times 10^{16}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$
thermal resistance $19.6809615287(61)$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
thermal expansion $1.08881954500(34) \times 10^{13}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
lapse rate $1.9315313662(12) \times 10^{-29}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}^{-1}\text{K}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$

Molar Ratios

Name Quantity Product
molar mass $1000.000000340000000(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molality $0.00099999999966(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molar amount $5.97863740449(31) \times 10^{23}$ $\left[\text{m}_\text{p}\right]/\left[\text{mol}\right]$ $\text{N}_\text{A}\cdot \mu_\text{pu}^{-1}$
molarity $5.5612860563(53) \times 10^{-24}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{m}^{-3}\text{mol}\right]$ $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-4}\tau^{-3}2^{-3}$
molar volume $1.7981452309(17) \times 10^{23}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{4}\tau^{3}2^{3}$
molar entropy $0.1211475128196(64)$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{pu}$
molar energy $1.11265005644(34) \times 10^{-14}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molar conductivity $2.38429954040(45) \times 10^{-7}$ $\left[\text{m}_\text{p}^{-2}\text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar\cdot \text{e}^{-2}\text{R}_{\infty}\cdot \alpha^{-1}\mu_\text{eu}^{-1}\mu_\text{pu}^{2}2$
molar susceptibility $1.7981452309(17) \times 10^{23}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{4}\tau^{3}2^{3}$
catalysis $0.41941039018(14)$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{kat}\right]$ $\text{N}_\text{A}\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-2}\tau^{-1}2^{-1}$
specificity $0.126142587663(80)$ $\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{3}\tau^{2}2^{2}$
diffusion flux $3.7694726019(12) \times 10^{16}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ $\text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-2}\tau^{-1}2^{-1}$

Photometric Ratios

Name Quantity Product
luminous flux $6.8322626869(43) \times 10^{-18}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
luminous intensity $6.8322626869(43) \times 10^{-18}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$
luminance $3.0218987022(38) \times 10^{-49}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
illuminance $3.0218987022(38) \times 10^{-49}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
luminous energy $9.7392964537(30) \times 10^{6}$ $\left[\text{m}_\text{p}\right]/\left[\text{s}\cdot \text{lm}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$
luminous exposure $4.3076750211(40) \times 10^{-25}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{lx} \cdot \text{s}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$
luminous efficacy $0.0014640866354352104$ $\left[\mathbb{1}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ $\text{K}_\text{cd}^{-1}$

Kinematic

Unified SI2019 QCDGauss
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{s}$ $\text{m}_\text{p}^{-1}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{s}$ $\text{m}_\text{p}^{-1}$
length $\text{L}$ $\text{m}$ $\text{m}_\text{p}^{-1}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}$ $\text{m}_\text{p}^{-1}$
area $\text{L}^{2}$ $\text{m}^{2}$ $\text{m}_\text{p}^{-2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}^{2}$ $\text{m}_\text{p}^{-2}$
volume $\text{L}^{3}$ $\text{m}^{3}$ $\text{m}_\text{p}^{-3}$
wavenumber $\text{L}^{-1}$ $\text{m}^{-1}$ $\text{m}_\text{p}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}^{-1}$ $\text{m}_\text{p}$
fuel efficiency $\text{L}^{-2}$ $\text{m}^{-2}$ $\text{m}_\text{p}^{2}$
number density $\text{L}^{-3}$ $\text{m}^{-3}$ $\text{m}_\text{p}^{3}$
frequency $\text{T}^{-1}$ $\text{Hz}$ $\text{m}_\text{p}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{Hz}$ $\text{m}_\text{p}$
frequency drift $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$ $\text{m}_\text{p}^{2}$
stagnance $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$ $\mathbb{1}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$ $\mathbb{1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$ $\text{m}_\text{p}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$ $\text{m}_\text{p}^{2}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$ $\text{m}_\text{p}^{3}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$ $\text{m}_\text{p}^{4}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$ $\text{m}_\text{p}^{5}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$ $\text{m}_\text{p}^{-2}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}^{2}$ $\text{m}_\text{p}^{-2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{Hz}$ $\text{m}_\text{p}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{m}_\text{p}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{m}_\text{p}$

Mechanical

Unified SI2019 QCDGauss
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{kg}$ $\text{m}_\text{p}$
mass $\text{M}$ $\text{kg}$ $\text{m}_\text{p}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{m}_\text{p}^{2}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$ $\text{m}_\text{p}^{2}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$ $\text{m}_\text{p}^{3}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$ $\text{m}_\text{p}^{4}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ $\text{m}_\text{p}^{5}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{m}_\text{p}^{-4}$
force $\text{F}$ $\text{N}$ $\text{m}_\text{p}^{2}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}\cdot \text{s}^{-2}$ $\text{m}_\text{p}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{Pa}$ $\text{m}_\text{p}^{4}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{Pa}^{-1}$ $\text{m}_\text{p}^{-4}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{Pa} \cdot \text{s}$ $\text{m}_\text{p}^{3}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$ $\text{m}_\text{p}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$ $\text{m}_\text{p}^{-1}$
impulse $\text{F}\cdot \text{T}$ $\text{N} \cdot \text{s}$ $\text{m}_\text{p}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$ $\text{m}_\text{p}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$ $\text{m}_\text{p}^{3}$
energy $\text{F}\cdot \text{L}$ $\text{J}$ $\text{m}_\text{p}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{J} \cdot \text{kg}^{-1}$ $\mathbb{1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{N} \cdot \text{m}^{-1}$ $\text{m}_\text{p}^{3}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{W}$ $\text{m}_\text{p}^{2}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-3}$ $\text{m}_\text{p}^{5}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-2}$ $\text{m}_\text{p}^{4}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{W} \cdot \text{m}^{-2}$ $\text{m}_\text{p}^{4}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{W}$ $\text{m}_\text{p}^{2}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}^{-1}$ $\text{m}_\text{p}^{3}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{m}_\text{p}^{2}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ $\text{m}_\text{p}^{7}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ $\text{m}_\text{p}^{6}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ $\text{m}_\text{p}^{4}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$ $\text{m}_\text{p}^{-6}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$ $\text{m}_\text{p}^{-3}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$ $\text{m}_\text{p}^{5}$

Electromagnetic

Unified SI2019 QCDGauss
charge $\text{Q}$ $\text{C}$ $\text{e}_\text{n}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$ $\text{m}_\text{p}^{3}\text{e}_\text{n}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}$
exposure $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ $\text{e}_\text{n}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$ $\text{m}_\text{p}^{3}\text{e}_\text{n}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\Omega$ $\text{e}_\text{n}^{-2}$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{S}$ $\text{e}_\text{n}^{2}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\Omega \cdot \text{m}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}^{2}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{F}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{2}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{H}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{H}^{-1}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}^{2}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{F} \cdot \text{m}^{-1}$ $\text{e}_\text{n}^{2}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H} \cdot \text{m}^{-1}$ $\text{e}_\text{n}^{-2}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{m}_\text{p}^{-4}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}^{-1}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{V}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}^{-1}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{s}^{-1}\text{C}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$ $\text{e}_\text{n}^{-1}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb}$ $\text{e}_\text{n}^{-1}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}^{-2}\text{C}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{J} \cdot \text{T}^{-1}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ $\text{m}_\text{p}^{-3}\text{e}_\text{n}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}$ $\text{m}_\text{p}^{-3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-1}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}^{-3}\text{s}\cdot \text{C}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}\cdot \text{s}^{-1}\text{C}$ $\text{e}_\text{n}$

Thermodynamic

Unified SI2019 QCDGauss
temperature $\Theta$ $\text{K}$ $\text{m}_\text{p}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1}$ $\mathbb{1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ $\text{m}_\text{p}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ $\text{m}_\text{p}^{3}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ $\text{m}_\text{p}^{2}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{K}^{-1}$ $\text{m}_\text{p}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ $\text{m}_\text{p}^{-2}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{W}^{-1}$ $\text{m}_\text{p}^{-1}$
thermal expansion $\Theta^{-1}$ $\text{K}^{-1}$ $\text{m}_\text{p}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}^{-1}\text{K}$ $\text{m}_\text{p}^{2}$

Molar

Unified SI2019 QCDGauss
molar mass $\text{M}\cdot \text{N}^{-1}$ $\text{kg}\cdot \text{mol}^{-1}$ $\mathbb{1}$
molality $\text{M}^{-1}\text{N}$ $\text{kg}^{-1}\text{mol}$ $\mathbb{1}$
molar amount $\text{N}$ $\text{mol}$ $\text{m}_\text{p}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}^{-3}\text{mol}$ $\text{m}_\text{p}^{4}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{m}_\text{p}^{-4}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ $\text{m}_\text{p}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{J} \cdot \text{mol}^{-1}$ $\mathbb{1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ $\text{m}_\text{p}^{-2}\text{e}_\text{n}^{2}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{m}_\text{p}^{-4}$
catalysis $\text{T}^{-1}\text{N}$ $\text{kat}$ $\text{m}_\text{p}^{2}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ $\text{m}_\text{p}^{-3}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$ $\text{m}_\text{p}^{2}$

Photometric

Unified SI2019 QCDGauss
luminous flux $\text{J}$ $\text{cd}$ $\text{m}_\text{p}^{2}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{cd}$ $\text{m}_\text{p}^{2}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{lx}$ $\text{m}_\text{p}^{4}$
illuminance $\text{L}^{-2}\text{J}$ $\text{lx}$ $\text{m}_\text{p}^{4}$
luminous energy $\text{T}\cdot \text{J}$ $\text{s}\cdot \text{lm}$ $\text{m}_\text{p}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{lx} \cdot \text{s}$ $\text{m}_\text{p}^{3}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{lm} \cdot \text{W}^{-1}$ $\mathbb{1}$