SI2019 -> QCDoriginal
data derived with UnitSystems.jl
Kinematic Ratios
Name | Quantity | Product |
---|---|---|
angle | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
solid angle | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
time | $1.42548624080(45) \times 10^{24}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{s}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
angular time | $1.42548624080(45) \times 10^{24}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{s}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
length | $4.7549102813(15) \times 10^{15}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{m}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
angular length | $4.7549102813(15) \times 10^{15}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{m}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
area | $2.2609171783(14) \times 10^{31}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{2}\right]$ | $\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
angular area | $2.2609171783(14) \times 10^{31}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{2}\right]$ | $\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
volume | $1.0750458336(10) \times 10^{47}$ $\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}^{3}\right]$ | $\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
wavenumber | $2.10308910335(66) \times 10^{-16}$ $\left[\text{m}_\text{p}\right]/\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
angular wavenumber | $2.10308910335(66) \times 10^{-16}$ $\left[\text{m}_\text{p}\right]/\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
fuel efficiency | $4.4229837766(28) \times 10^{-32}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}^{-2}\right]$ | $\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
number density | $9.3019289849(87) \times 10^{-48}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{m}^{-3}\right]$ | $\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
frequency | $7.0151501388(22) \times 10^{-25}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
angular frequency | $7.0151501388(22) \times 10^{-25}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
frequency drift | $4.9212331470(31) \times 10^{-49}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ | $\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
stagnance | $2.99792458 \times 10^{8}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ | $\text{c}$ |
speed | $3.3356409519815204 \times 10^{-9}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}^{-1}$ |
acceleration | $2.34000220873(73) \times 10^{-33}$ $\left[\text{m}_\text{p}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ | $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
jerk | $1.6415466819(10) \times 10^{-57}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ | $\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
snap | $1.1515696434(11) \times 10^{-81}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ | $\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
crackle | $8.078433943(10) \times 10^{-106}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ | $\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-4}2^{-4}$ |
pop | $5.6671427000(89) \times 10^{-130}$ $\left[\text{m}_\text{p}^{5}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ | $\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-5}2^{-5}$ |
volume flow | $7.5416079290(47) \times 10^{22}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
etendue | $2.2609171783(14) \times 10^{31}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{m}^{2}\right]$ | $\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
photon intensity | $7.0151501388(22) \times 10^{-25}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
photon irradiance | $6.3049025169(20) \times 10^{-8}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ | $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
photon radiance | $6.3049025169(20) \times 10^{-8}$ $\left[\text{m}_\text{p}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ | $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
Mechanical Ratios
Name | Quantity | Product |
---|---|---|
inertia | $5.9786374065(19) \times 10^{26}$ $\left[\text{m}_\text{p}\right]/\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
mass | $5.9786374065(19) \times 10^{26}$ $\left[\text{m}_\text{p}\right]/\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
mass flow | $419.41039032(26)$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
linear density | $1.25736071826(79) \times 10^{11}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
area density | $2.6443416255(25) \times 10^{-5}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
density | $5.5612860582(69) \times 10^{-21}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
specific weight | $1.3013421660(20) \times 10^{-53}$ $\left[\text{m}_\text{p}^{5}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-4}2^{-5}$ |
specific volume | $1.7981452303(22) \times 10^{20}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
force | $1.39900247365(87) \times 10^{-6}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{N}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
specific force | $2.34000220873(73) \times 10^{-33}$ $\left[\text{m}_\text{p}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ | $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
gravity force | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
pressure | $6.1877652444(77) \times 10^{-38}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{Pa}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
compressibility | $1.6160923379(20) \times 10^{37}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{Pa}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
viscosity | $8.8205742172(83) \times 10^{-14}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{Pa} \cdot \text{s}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
diffusivity | $1.58606734573(50) \times 10^{7}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
rotational inertia | $1.35172040154(42) \times 10^{58}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$ |
impulse | $1.99425877703(62) \times 10^{18}$ $\left[\text{m}_\text{p}\right]/\left[\text{N} \cdot \text{s}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
momentum | $1.99425877703(62) \times 10^{18}$ $\left[\text{m}_\text{p}\right]/\left[\text{N} \cdot \text{s}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
angular momentum | $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ | $\hbar^{-1}\tau$ |
yank | $9.8142123972(92) \times 10^{-31}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
energy | $6.6521312455(21) \times 10^{9}$ $\left[\text{m}_\text{p}\right]/\left[\text{J}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
specific energy | $1.1126500560536183 \times 10^{-17}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ | $\text{c}^{-2}$ |
action | $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ | $\hbar^{-1}\tau$ |
fluence | $2.9422268579(28) \times 10^{-22}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
power | $4.6665699430(29) \times 10^{-15}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{W}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
power density | $4.3408102213(68) \times 10^{-62}$ $\left[\text{m}_\text{p}^{5}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-4}2^{-5}$ |
irradiance | $2.0640163151(26) \times 10^{-46}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
radiance | $2.0640163151(26) \times 10^{-46}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
radiant intensity | $4.6665699430(29) \times 10^{-15}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{W}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
spectral flux | $9.8142123972(92) \times 10^{-31}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
spectral exposure | $419.41039032(26)$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
sound exposure | $5.457964258(12) \times 10^{-51}$ $\left[\text{m}_\text{p}^{7}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ | $\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{14}\mu_\text{eu}^{7}\mu_\text{pu}^{-7}\tau^{-5}2^{-7}$ |
impedance | $8.204835497(15) \times 10^{-61}$ $\left[\text{m}_\text{p}^{6}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\mu_\text{eu}^{6}\mu_\text{pu}^{-6}\tau^{-5}2^{-6}$ |
specific impedance | $1.8550453522(23) \times 10^{-29}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
admittance | $1.2187934789(23) \times 10^{60}$ $\left[\text{m}_\text{p}^{-6}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ | $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-12}\mu_\text{eu}^{-6}\mu_\text{pu}^{6}\tau^{5}2^{6}$ |
compliance | $3.3987861858(32) \times 10^{21}$ $\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
inertance | $1.1695880110(18) \times 10^{-36}$ $\left[\text{m}_\text{p}^{5}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-5}\alpha^{10}\mu_\text{eu}^{5}\mu_\text{pu}^{-5}\tau^{-4}2^{-5}$ |
Electromagnetic Ratios
Name | Quantity | Product |
---|---|---|
charge | $6.241509074460763 \times 10^{18}$ $\left[\text{e}\right]/\left[\text{C}\right]$ | $\text{e}^{-1}$ |
charge density | $5.8058074169(54) \times 10^{-29}$ $\left[\text{m}_\text{p}^{3}\text{e}\right]/\left[\text{m}^{-3}\text{C}\right]$ | $\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
linear charge density | $1312.64497230(41)$ $\left[\text{m}_\text{p}\cdot \text{e}\right]/\left[\text{m}^{-1}\text{C}\right]$ | $\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
exposure | $1.04396849149(33) \times 10^{-8}$ $\left[\text{m}_\text{p}^{-1}\text{e}\right]/\left[\text{kg}^{-1}\text{C}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
mobility | $0.01690413011042591$ $\left[\text{e}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{e}\cdot \tau$ |
current | $4.3785123250(14) \times 10^{-6}$ $\left[\text{m}_\text{p}\cdot \text{e}\right]/\left[\text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
current density | $1.9366088979(18) \times 10^{-37}$ $\left[\text{m}_\text{p}^{3}\text{e}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
resistance | $0.00024341348057879472$ $\left[\text{e}^{-2}\right]/\left[\Omega\right]$ | $\hbar^{-1}\text{e}^{2}\tau$ |
conductance | $4108.2359022276605$ $\left[\text{e}^{2}\right]/\left[\text{S}\right]$ | $\hbar\cdot \text{e}^{-2}\tau^{-1}$ |
resistivity | $1.15740926141(36) \times 10^{12}$ $\left[\text{m}_\text{p}^{-1}\text{e}^{-2}\right]/\left[\Omega \cdot \text{m}\right]$ | $\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$ |
conductivity | $8.6399861600(27) \times 10^{-13}$ $\left[\text{m}_\text{p}\cdot \text{e}^{2}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ | $\hbar\cdot \text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
capacitance | $5.8562337526(18) \times 10^{27}$ $\left[\text{m}_\text{p}^{-1}\text{e}^{2}\right]/\left[\text{F}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
inductance | $3.4698256739(11) \times 10^{20}$ $\left[\text{m}_\text{p}^{-1}\text{e}^{-2}\right]/\left[\text{H}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$ |
reluctance | $2.88198916597(90) \times 10^{-21}$ $\left[\text{m}_\text{p}\cdot \text{e}^{2}\right]/\left[\text{H}^{-1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
permeance | $3.4698256739(11) \times 10^{20}$ $\left[\text{m}_\text{p}^{-1}\text{e}^{-2}\right]/\left[\text{H}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$ |
permittivity | $1.2316181391726782 \times 10^{12}$ $\left[\text{e}^{2}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-2}\tau^{-1}$ |
permeability | $72973.52565305211$ $\left[\text{e}^{-2}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}^{2}\tau$ |
susceptibility | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
specific susceptibility | $1.7981452303(22) \times 10^{20}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
demagnetizing factor | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
vector potential | $0.319515481471(10)$ $\left[\text{m}_\text{p}\cdot \text{e}^{-1}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
electric potential | $1.06578892479(33) \times 10^{-9}$ $\left[\text{m}_\text{p}\cdot \text{e}^{-1}\right]/\left[\text{V}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
magnetic potential | $4.3785123250(14) \times 10^{-6}$ $\left[\text{m}_\text{p}\cdot \text{e}\right]/\left[\text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
electric field | $2.2414490742(14) \times 10^{-25}$ $\left[\text{m}_\text{p}^{2}\text{e}^{-1}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
magnetic field | $9.2084015596(58) \times 10^{-22}$ $\left[\text{m}_\text{p}^{2}\text{e}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
electric flux | $5.067730716156394 \times 10^{6}$ $\left[\text{e}^{-1}\right]/\left[\text{V} \cdot \text{m}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \tau$ |
magnetic flux | $1.519267447878626 \times 10^{15}$ $\left[\text{e}^{-1}\right]/\left[\text{Wb}\right]$ | $\hbar^{-1}\text{e}\cdot \tau$ |
electric displacement | $2.7606093378(17) \times 10^{-13}$ $\left[\text{m}_\text{p}^{2}\text{e}\right]/\left[\text{m}^{-2}\text{C}\right]$ | $\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
magnetic flux density | $6.7196952743(42) \times 10^{-17}$ $\left[\text{m}_\text{p}^{2}\text{e}^{-1}\right]/\left[\text{T}\right]$ | $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
electric dipole moment | $2.96778156689(93) \times 10^{34}$ $\left[\text{m}_\text{p}^{-1}\text{e}\right]/\left[\text{m}\cdot \text{C}\right]$ | $\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
magnetic dipole moment | $9.8994537311(31) \times 10^{25}$ $\left[\text{m}_\text{p}^{-1}\text{e}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
electric polarizability | $1.3240459491(12) \times 10^{59}$ $\left[\text{m}_\text{p}^{-3}\text{e}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
magnetic polarizability | $1.0750458336(10) \times 10^{47}$ $\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}^{3}\right]$ | $\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
magnetic moment | $7.2239804080(23) \times 10^{30}$ $\left[\text{m}_\text{p}^{-1}\text{e}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ | $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}2$ |
specific magnetization | $8.2760985896(52) \times 10^{-5}$ $\left[\text{m}_\text{p}^{2}\text{e}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ | $\text{c}\cdot \text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
pole strength | $2.08194332709356 \times 10^{10}$ $\left[\text{e}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}$ |
Thermodynamic Ratios
Name | Quantity | Product |
---|---|---|
temperature | $9.1842583520(29) \times 10^{-14}$ $\left[\text{m}_\text{p}\right]/\left[\text{K}\right]$ | $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
entropy | $7.24297051603992 \times 10^{22}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}$ |
specific entropy | $0.000121147512778(38)$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
volume heat capacity | $6.7373597380(63) \times 10^{-25}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
thermal conductivity | $1.06859062769(67) \times 10^{-17}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
thermal conductance | $0.050810525621(16)$ $\left[\text{m}_\text{p}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
thermal resistivity | $9.3581206319(58) \times 10^{16}$ $\left[\text{m}_\text{p}^{-2}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
thermal resistance | $19.6809615287(61)$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
thermal expansion | $1.08881954500(34) \times 10^{13}$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
lapse rate | $1.9315313662(12) \times 10^{-29}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}^{-1}\text{K}\right]$ | $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
Molar Ratios
Name | Quantity | Product |
---|---|---|
molar mass | $1000.000000340000000(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$ |
molality | $0.00099999999966(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ | $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar amount | $5.97863740449(31) \times 10^{23}$ $\left[\text{m}_\text{p}\right]/\left[\text{mol}\right]$ | $\text{N}_\text{A}\cdot \mu_\text{pu}^{-1}$ |
molarity | $5.5612860563(53) \times 10^{-24}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{m}^{-3}\text{mol}\right]$ | $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-4}\tau^{-3}2^{-3}$ |
molar volume | $1.7981452309(17) \times 10^{23}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{4}\tau^{3}2^{3}$ |
molar entropy | $0.1211475128196(64)$ $\left[\text{m}_\text{p}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{pu}$ |
molar energy | $1.11265005644(34) \times 10^{-14}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$ |
molar conductivity | $3.2673486963(11) \times 10^{-5}$ $\left[\text{m}_\text{p}^{-2}\text{e}^{2}\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\hbar\cdot \text{e}^{-2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}^{2}2$ |
molar susceptibility | $1.7981452309(17) \times 10^{23}$ $\left[\text{m}_\text{p}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{4}\tau^{3}2^{3}$ |
catalysis | $0.41941039018(14)$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{kat}\right]$ | $\text{N}_\text{A}\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-2}\tau^{-1}2^{-1}$ |
specificity | $0.126142587663(80)$ $\left[\text{m}_\text{p}^{-3}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{3}\tau^{2}2^{2}$ |
diffusion flux | $3.7694726019(12) \times 10^{16}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ | $\text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-2}\tau^{-1}2^{-1}$ |
Photometric Ratios
Name | Quantity | Product |
---|---|---|
luminous flux | $6.8322626869(43) \times 10^{-18}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{cd}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
luminous intensity | $6.8322626869(43) \times 10^{-18}$ $\left[\text{m}_\text{p}^{2}\right]/\left[\text{cd}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
luminance | $3.0218987022(38) \times 10^{-49}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{lx}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
illuminance | $3.0218987022(38) \times 10^{-49}$ $\left[\text{m}_\text{p}^{4}\right]/\left[\text{lx}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
luminous energy | $9.7392964537(30) \times 10^{6}$ $\left[\text{m}_\text{p}\right]/\left[\text{s}\cdot \text{lm}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
luminous exposure | $4.3076750211(40) \times 10^{-25}$ $\left[\text{m}_\text{p}^{3}\right]/\left[\text{lx} \cdot \text{s}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
luminous efficacy | $0.0014640866354352104$ $\left[\mathbb{1}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ | $\text{K}_\text{cd}^{-1}$ |
Kinematic
Unified | SI2019 | QCDoriginal | |
---|---|---|---|
angle | $\text{A}$ | $\mathbb{1}$ | $\mathbb{1}$ |
solid angle | $\text{A}^{2}$ | $\mathbb{1}$ | $\mathbb{1}$ |
time | $\text{T}$ | $\text{s}$ | $\text{m}_\text{p}^{-1}$ |
angular time | $\text{T}\cdot \text{A}^{-1}$ | $\text{s}$ | $\text{m}_\text{p}^{-1}$ |
length | $\text{L}$ | $\text{m}$ | $\text{m}_\text{p}^{-1}$ |
angular length | $\text{L}\cdot \text{A}^{-1}$ | $\text{m}$ | $\text{m}_\text{p}^{-1}$ |
area | $\text{L}^{2}$ | $\text{m}^{2}$ | $\text{m}_\text{p}^{-2}$ |
angular area | $\text{L}^{2}\text{A}^{-2}$ | $\text{m}^{2}$ | $\text{m}_\text{p}^{-2}$ |
volume | $\text{L}^{3}$ | $\text{m}^{3}$ | $\text{m}_\text{p}^{-3}$ |
wavenumber | $\text{L}^{-1}$ | $\text{m}^{-1}$ | $\text{m}_\text{p}$ |
angular wavenumber | $\text{L}^{-1}\text{A}$ | $\text{m}^{-1}$ | $\text{m}_\text{p}$ |
fuel efficiency | $\text{L}^{-2}$ | $\text{m}^{-2}$ | $\text{m}_\text{p}^{2}$ |
number density | $\text{L}^{-3}$ | $\text{m}^{-3}$ | $\text{m}_\text{p}^{3}$ |
frequency | $\text{T}^{-1}$ | $\text{Hz}$ | $\text{m}_\text{p}$ |
angular frequency | $\text{T}^{-1}\text{A}$ | $\text{Hz}$ | $\text{m}_\text{p}$ |
frequency drift | $\text{T}^{-2}$ | $\text{Hz} \cdot \text{s}^{-1}$ | $\text{m}_\text{p}^{2}$ |
stagnance | $\text{L}^{-1}\text{T}$ | $\text{m}^{-1}\text{s}$ | $\mathbb{1}$ |
speed | $\text{L}\cdot \text{T}^{-1}$ | $\text{m}\cdot \text{s}^{-1}$ | $\mathbb{1}$ |
acceleration | $\text{L}\cdot \text{T}^{-2}$ | $\text{m}\cdot \text{s}^{-2}$ | $\text{m}_\text{p}$ |
jerk | $\text{L}\cdot \text{T}^{-3}$ | $\text{m}\cdot \text{s}^{-3}$ | $\text{m}_\text{p}^{2}$ |
snap | $\text{L}\cdot \text{T}^{-4}$ | $\text{m}\cdot \text{s}^{-4}$ | $\text{m}_\text{p}^{3}$ |
crackle | $\text{L}\cdot \text{T}^{-5}$ | $\text{m}\cdot \text{s}^{-5}$ | $\text{m}_\text{p}^{4}$ |
pop | $\text{L}\cdot \text{T}^{-6}$ | $\text{m}\cdot \text{s}^{-6}$ | $\text{m}_\text{p}^{5}$ |
volume flow | $\text{L}^{3}\text{T}^{-1}$ | $\text{m}^{3}\text{s}^{-1}$ | $\text{m}_\text{p}^{-2}$ |
etendue | $\text{L}^{2}\text{A}^{2}$ | $\text{m}^{2}$ | $\text{m}_\text{p}^{-2}$ |
photon intensity | $\text{T}^{-1}\text{A}^{-2}$ | $\text{Hz}$ | $\text{m}_\text{p}$ |
photon irradiance | $\text{L}^{-2}\text{T}$ | $\text{Hz} \cdot \text{m}^{-2}$ | $\text{m}_\text{p}$ |
photon radiance | $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ | $\text{Hz} \cdot \text{m}^{-2}$ | $\text{m}_\text{p}$ |
Mechanical
Unified | SI2019 | QCDoriginal | |
---|---|---|---|
inertia | $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ | $\text{kg}$ | $\text{m}_\text{p}$ |
mass | $\text{M}$ | $\text{kg}$ | $\text{m}_\text{p}$ |
mass flow | $\text{M}\cdot \text{T}^{-1}$ | $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ | $\text{m}_\text{p}^{2}$ |
linear density | $\text{M}\cdot \text{L}^{-1}$ | $\text{kg}\cdot \text{m}^{-1}$ | $\text{m}_\text{p}^{2}$ |
area density | $\text{M}\cdot \text{L}^{-2}$ | $\text{kg}\cdot \text{m}^{-2}$ | $\text{m}_\text{p}^{3}$ |
density | $\text{M}\cdot \text{L}^{-3}$ | $\text{kg}\cdot \text{m}^{-3}$ | $\text{m}_\text{p}^{4}$ |
specific weight | $\text{F}\cdot \text{L}^{-3}$ | $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ | $\text{m}_\text{p}^{5}$ |
specific volume | $\text{M}^{-1}\text{L}^{3}$ | $\text{kg}^{-1}\text{m}^{3}$ | $\text{m}_\text{p}^{-4}$ |
force | $\text{F}$ | $\text{N}$ | $\text{m}_\text{p}^{2}$ |
specific force | $\text{F}\cdot \text{M}^{-1}$ | $\text{m}\cdot \text{s}^{-2}$ | $\text{m}_\text{p}$ |
gravity force | $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ | $\mathbb{1}$ | $\mathbb{1}$ |
pressure | $\text{F}\cdot \text{L}^{-2}$ | $\text{Pa}$ | $\text{m}_\text{p}^{4}$ |
compressibility | $\text{F}^{-1}\text{L}^{2}$ | $\text{Pa}^{-1}$ | $\text{m}_\text{p}^{-4}$ |
viscosity | $\text{F}\cdot \text{L}^{-2}\text{T}$ | $\text{Pa} \cdot \text{s}$ | $\text{m}_\text{p}^{3}$ |
diffusivity | $\text{L}^{2}\text{T}^{-1}$ | $\text{m}^{2}\text{s}^{-1}$ | $\text{m}_\text{p}^{-1}$ |
rotational inertia | $\text{M}\cdot \text{L}^{2}$ | $\text{kg}\cdot \text{m}^{2}$ | $\text{m}_\text{p}^{-1}$ |
impulse | $\text{F}\cdot \text{T}$ | $\text{N} \cdot \text{s}$ | $\text{m}_\text{p}$ |
momentum | $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ | $\text{N} \cdot \text{s}$ | $\text{m}_\text{p}$ |
angular momentum | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ | $\text{J} \cdot \text{s}$ | $\mathbb{1}$ |
yank | $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ | $\text{N} \cdot \text{s}^{-1}$ | $\text{m}_\text{p}^{3}$ |
energy | $\text{F}\cdot \text{L}$ | $\text{J}$ | $\text{m}_\text{p}$ |
specific energy | $\text{F}\cdot \text{M}^{-1}\text{L}$ | $\text{J} \cdot \text{kg}^{-1}$ | $\mathbb{1}$ |
action | $\text{F}\cdot \text{L}\cdot \text{T}$ | $\text{J} \cdot \text{s}$ | $\mathbb{1}$ |
fluence | $\text{F}\cdot \text{L}^{-1}$ | $\text{N} \cdot \text{m}^{-1}$ | $\text{m}_\text{p}^{3}$ |
power | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ | $\text{W}$ | $\text{m}_\text{p}^{2}$ |
power density | $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ | $\text{W} \cdot \text{m}^{-3}$ | $\text{m}_\text{p}^{5}$ |
irradiance | $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ | $\text{W} \cdot \text{m}^{-2}$ | $\text{m}_\text{p}^{4}$ |
radiance | $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ | $\text{W} \cdot \text{m}^{-2}$ | $\text{m}_\text{p}^{4}$ |
radiant intensity | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ | $\text{W}$ | $\text{m}_\text{p}^{2}$ |
spectral flux | $\text{F}\cdot \text{T}^{-1}$ | $\text{N} \cdot \text{s}^{-1}$ | $\text{m}_\text{p}^{3}$ |
spectral exposure | $\text{F}\cdot \text{L}^{-1}\text{T}$ | $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ | $\text{m}_\text{p}^{2}$ |
sound exposure | $\text{F}^{2}\text{L}^{-4}\text{T}$ | $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ | $\text{m}_\text{p}^{7}$ |
impedance | $\text{F}\cdot \text{L}^{-5}\text{T}$ | $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ | $\text{m}_\text{p}^{6}$ |
specific impedance | $\text{F}\cdot \text{L}^{-3}\text{T}$ | $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ | $\text{m}_\text{p}^{4}$ |
admittance | $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ | $\text{kg}^{-1}\text{m}^{4}\text{s}$ | $\text{m}_\text{p}^{-6}$ |
compliance | $\text{M}^{-1}\text{T}^{2}$ | $\text{m} \cdot \text{N}^{-1}$ | $\text{m}_\text{p}^{-3}$ |
inertance | $\text{M}\cdot \text{L}^{-4}$ | $\text{kg}\cdot \text{m}^{-4}$ | $\text{m}_\text{p}^{5}$ |
Electromagnetic
Unified | SI2019 | QCDoriginal | |
---|---|---|---|
charge | $\text{Q}$ | $\text{C}$ | $\text{e}$ |
charge density | $\text{L}^{-3}\text{Q}$ | $\text{m}^{-3}\text{C}$ | $\text{m}_\text{p}^{3}\text{e}$ |
linear charge density | $\text{L}^{-1}\text{Q}$ | $\text{m}^{-1}\text{C}$ | $\text{m}_\text{p}\cdot \text{e}$ |
exposure | $\text{M}^{-1}\text{Q}$ | $\text{kg}^{-1}\text{C}$ | $\text{m}_\text{p}^{-1}\text{e}$ |
mobility | $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ | $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ | $\text{e}^{-1}$ |
current | $\text{T}^{-1}\text{Q}$ | $\text{s}^{-1}\text{C}$ | $\text{m}_\text{p}\cdot \text{e}$ |
current density | $\text{L}^{-2}\text{T}^{-1}\text{Q}$ | $\text{m}^{-2}\text{s}^{-1}\text{C}$ | $\text{m}_\text{p}^{3}\text{e}$ |
resistance | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ | $\Omega$ | $\text{e}^{-2}$ |
conductance | $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ | $\text{S}$ | $\text{e}^{2}$ |
resistivity | $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ | $\Omega \cdot \text{m}$ | $\text{m}_\text{p}^{-1}\text{e}^{-2}$ |
conductivity | $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ | $\text{S} \cdot \text{m}^{-1}$ | $\text{m}_\text{p}\cdot \text{e}^{2}$ |
capacitance | $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ | $\text{F}$ | $\text{m}_\text{p}^{-1}\text{e}^{2}$ |
inductance | $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ | $\text{H}$ | $\text{m}_\text{p}^{-1}\text{e}^{-2}$ |
reluctance | $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ | $\text{H}^{-1}$ | $\text{m}_\text{p}\cdot \text{e}^{2}$ |
permeance | $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ | $\text{H}$ | $\text{m}_\text{p}^{-1}\text{e}^{-2}$ |
permittivity | $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ | $\text{F} \cdot \text{m}^{-1}$ | $\text{e}^{2}$ |
permeability | $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ | $\text{H} \cdot \text{m}^{-1}$ | $\text{e}^{-2}$ |
susceptibility | $\text{R}^{-1}$ | $\mathbb{1}$ | $\mathbb{1}$ |
specific susceptibility | $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ | $\text{kg}^{-1}\text{m}^{3}$ | $\text{m}_\text{p}^{-4}$ |
demagnetizing factor | $\text{R}$ | $\mathbb{1}$ | $\mathbb{1}$ |
vector potential | $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{Wb} \cdot \text{m}^{-1}$ | $\text{m}_\text{p}\cdot \text{e}^{-1}$ |
electric potential | $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ | $\text{V}$ | $\text{m}_\text{p}\cdot \text{e}^{-1}$ |
magnetic potential | $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ | $\text{s}^{-1}\text{C}$ | $\text{m}_\text{p}\cdot \text{e}$ |
electric field | $\text{F}\cdot \text{Q}^{-1}$ | $\text{V} \cdot \text{m}^{-1}$ | $\text{m}_\text{p}^{2}\text{e}^{-1}$ |
magnetic field | $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ | $\text{m}^{-1}\text{s}^{-1}\text{C}$ | $\text{m}_\text{p}^{2}\text{e}$ |
electric flux | $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ | $\text{V} \cdot \text{m}$ | $\text{e}^{-1}$ |
magnetic flux | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{Wb}$ | $\text{e}^{-1}$ |
electric displacement | $\text{L}^{-2}\text{Q}\cdot \text{R}$ | $\text{m}^{-2}\text{C}$ | $\text{m}_\text{p}^{2}\text{e}$ |
magnetic flux density | $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{T}$ | $\text{m}_\text{p}^{2}\text{e}^{-1}$ |
electric dipole moment | $\text{L}\cdot \text{Q}$ | $\text{m}\cdot \text{C}$ | $\text{m}_\text{p}^{-1}\text{e}$ |
magnetic dipole moment | $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ | $\text{J} \cdot \text{T}^{-1}$ | $\text{m}_\text{p}^{-1}\text{e}$ |
electric polarizability | $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ | $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ | $\text{m}_\text{p}^{-3}\text{e}^{2}$ |
magnetic polarizability | $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ | $\text{m}^{3}$ | $\text{m}_\text{p}^{-3}$ |
magnetic moment | $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{Wb} \cdot \text{m}$ | $\text{m}_\text{p}^{-1}\text{e}^{-1}$ |
specific magnetization | $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ | $\text{m}^{-3}\text{s}\cdot \text{C}$ | $\text{m}_\text{p}^{2}\text{e}$ |
pole strength | $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ | $\text{m}\cdot \text{s}^{-1}\text{C}$ | $\text{e}$ |
Thermodynamic
Unified | SI2019 | QCDoriginal | |
---|---|---|---|
temperature | $\Theta$ | $\text{K}$ | $\text{m}_\text{p}$ |
entropy | $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ | $\text{J} \cdot \text{K}^{-1}$ | $\mathbb{1}$ |
specific entropy | $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ | $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ | $\text{m}_\text{p}^{-1}$ |
volume heat capacity | $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ | $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ | $\text{m}_\text{p}^{3}$ |
thermal conductivity | $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ | $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ | $\text{m}_\text{p}^{2}$ |
thermal conductance | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ | $\text{W} \cdot \text{K}^{-1}$ | $\text{m}_\text{p}$ |
thermal resistivity | $\text{F}^{-1}\text{T}\cdot \Theta$ | $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ | $\text{m}_\text{p}^{-2}$ |
thermal resistance | $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ | $\text{K} \cdot \text{W}^{-1}$ | $\text{m}_\text{p}^{-1}$ |
thermal expansion | $\Theta^{-1}$ | $\text{K}^{-1}$ | $\text{m}_\text{p}^{-1}$ |
lapse rate | $\text{L}^{-1}\Theta$ | $\text{m}^{-1}\text{K}$ | $\text{m}_\text{p}^{2}$ |
Molar
Unified | SI2019 | QCDoriginal | |
---|---|---|---|
molar mass | $\text{M}\cdot \text{N}^{-1}$ | $\text{kg}\cdot \text{mol}^{-1}$ | $\mathbb{1}$ |
molality | $\text{M}^{-1}\text{N}$ | $\text{kg}^{-1}\text{mol}$ | $\mathbb{1}$ |
molar amount | $\text{N}$ | $\text{mol}$ | $\text{m}_\text{p}$ |
molarity | $\text{L}^{-3}\text{N}$ | $\text{m}^{-3}\text{mol}$ | $\text{m}_\text{p}^{4}$ |
molar volume | $\text{L}^{3}\text{N}^{-1}$ | $\text{m}^{3}\text{mol}^{-1}$ | $\text{m}_\text{p}^{-4}$ |
molar entropy | $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ | $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ | $\text{m}_\text{p}^{-1}$ |
molar energy | $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ | $\text{J} \cdot \text{mol}^{-1}$ | $\mathbb{1}$ |
molar conductivity | $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ | $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ | $\text{m}_\text{p}^{-2}\text{e}^{2}$ |
molar susceptibility | $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ | $\text{m}^{3}\text{mol}^{-1}$ | $\text{m}_\text{p}^{-4}$ |
catalysis | $\text{T}^{-1}\text{N}$ | $\text{kat}$ | $\text{m}_\text{p}^{2}$ |
specificity | $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ | $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ | $\text{m}_\text{p}^{-3}$ |
diffusion flux | $\text{L}^{-2}\text{T}\cdot \text{N}$ | $\text{m}^{-2}\text{s}\cdot \text{mol}$ | $\text{m}_\text{p}^{2}$ |
Photometric
Unified | SI2019 | QCDoriginal | |
---|---|---|---|
luminous flux | $\text{J}$ | $\text{cd}$ | $\text{m}_\text{p}^{2}$ |
luminous intensity | $\text{J}\cdot \text{A}^{-2}$ | $\text{cd}$ | $\text{m}_\text{p}^{2}$ |
luminance | $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ | $\text{lx}$ | $\text{m}_\text{p}^{4}$ |
illuminance | $\text{L}^{-2}\text{J}$ | $\text{lx}$ | $\text{m}_\text{p}^{4}$ |
luminous energy | $\text{T}\cdot \text{J}$ | $\text{s}\cdot \text{lm}$ | $\text{m}_\text{p}$ |
luminous exposure | $\text{L}^{-2}\text{T}\cdot \text{J}$ | $\text{lx} \cdot \text{s}$ | $\text{m}_\text{p}^{3}$ |
luminous efficacy | $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ | $\text{lm} \cdot \text{W}^{-1}$ | $\mathbb{1}$ |