Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$2.0670686667591(40)
\times 10^{16}$
$\left[\text{T}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \tau$ |
angular time |
$2.0670686667591(40)
\times 10^{16}$
$\left[\text{T}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \tau$ |
length |
$1.88972612463(29)
\times 10^{10}$
$\left[\text{a}_0\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot
2$ |
angular length |
$1.88972612463(29)
\times 10^{10}$
$\left[\text{a}_0\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot
2$ |
area |
$3.5710648261(11)
\times 10^{20}$
$\left[\text{a}_0^2\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$ |
angular area |
$3.5710648261(11)
\times 10^{20}$
$\left[\text{a}_0^2\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$ |
volume |
$6.7483344946(31)
\times 10^{30}$
$\left[\text{a}_0^3\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$ |
wavenumber |
$5.29177210902(81)
\times 10^{-11}$
$\left[\text{a}_0^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-1}2^{-1}$ |
angular wavenumber |
$5.29177210902(81)
\times 10^{-11}$
$\left[\text{a}_0^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-1}2^{-1}$ |
fuel efficiency |
$2.80028520538(86)
\times 10^{-21}$
$\left[\text{a}_0^{-2}\right]/\left[\text{m}^{-2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$ |
number density |
$1.48184711472(68)
\times 10^{-31}$
$\left[\text{a}_0^{-3}\right]/\left[\text{m}^{-3}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$ |
frequency |
$4.8377686531713(93)
\times 10^{-17}$
$\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$ |
angular frequency |
$4.8377686531713(93)
\times 10^{-17}$
$\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$ |
frequency drift |
$2.3404005541607(90)
\times 10^{-33}$
$\left[\text{T}^{-2}\right]/\left[\text{Hz} \cdot
\text{s}^{-1}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-2}$ |
stagnance |
$1.09384563182(17)
\times 10^{6}$
$\left[\text{L}^{-1}\text{T}\right]/\left[\text{m}^{-1}\text{s}\right]$ |
$\text{c}\cdot
\alpha\cdot 2^{-1}$ |
speed |
$9.1420578088(14)
\times 10^{-7}$ $\left[\text{L}\cdot
\text{T}^{-1}\right]/\left[\text{m}\cdot
\text{s}^{-1}\right]$ |
$\text{c}^{-1}\alpha^{-1}2$ |
acceleration |
$4.42271606929(68)
\times 10^{-23}$ $\left[\text{L}\cdot
\text{T}^{-2}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2$ |
jerk |
$2.13960771619(33)
\times 10^{-39}$ $\left[\text{L}\cdot
\text{T}^{-3}\right]/\left[\text{m}\cdot
\text{s}^{-3}\right]$ |
$\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{-1}\tau^{-2}2$ |
snap |
$1.03509271395(16)
\times 10^{-55}$ $\left[\text{L}\cdot
\text{T}^{-4}\right]/\left[\text{m}\cdot
\text{s}^{-4}\right]$ |
$\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{-1}\tau^{-3}2$ |
crackle |
$5.00753908466(77)
\times 10^{-72}$ $\left[\text{L}\cdot
\text{T}^{-5}\right]/\left[\text{m}\cdot
\text{s}^{-5}\right]$ |
$\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{-1}\tau^{-4}2$ |
pop |
$2.42253156133(37)
\times 10^{-88}$ $\left[\text{L}\cdot
\text{T}^{-6}\right]/\left[\text{m}\cdot
\text{s}^{-6}\right]$ |
$\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{-1}\tau^{-5}2$ |
volume flow |
$3.2646881079(15)
\times 10^{14}$
$\left[\text{L}^{3}\text{T}^{-1}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\tau^{2}2^{3}$ |
etendue |
$3.5710648261(11)
\times 10^{20}$
$\left[\text{a}_0^2\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$ |
photon intensity |
$4.8377686531713(93)
\times 10^{-17}$
$\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$ |
photon irradiance |
$5.7883818060(18)
\times 10^{-5}$
$\left[\text{L}^{-2}\text{T}\right]/\left[\text{Hz}
\cdot \text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-2}$ |
photon radiance |
$5.7883818060(18)
\times 10^{-5}$
$\left[\text{L}^{-2}\text{T}\right]/\left[\text{Hz}
\cdot \text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-2}$ |
Name |
Quantity |
Product |
inertia |
$5.4888455288(17)
\times 10^{29}$
$\left[\text{M}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-2}$ |
mass |
$5.4888455288(17)
\times 10^{29}$
$\left[\text{M}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-2}$ |
mass flow |
$2.65537648411(81)
\times 10^{13}$ $\left[\text{M}\cdot
\text{T}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2}
\cdot \text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$ |
linear density |
$2.9045719680(13)
\times 10^{19}$ $\left[\text{M}\cdot
\text{L}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{3}\tau^{-1}2^{-3}$ |
area density |
$1.53703329288(94)
\times 10^{9}$ $\left[\text{M}\cdot
\text{L}^{-2}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-3}\alpha^{4}\tau^{-2}2^{-4}$ |
density |
$0.081336299099(62)$
$\left[\text{M}\cdot
\text{L}^{-3}\right]/\left[\text{kg}\cdot
\text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-5}$ |
specific weight |
$3.5972735704(22)
\times 10^{-24}$ $\left[\text{M}\cdot
\text{L}^{-2}\text{T}^{-2}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{4}\tau^{-4}2^{-4}$ |
specific volume |
$12.2946336516(94)$
$\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{5}$ |
force |
$2.42756053219(37)
\times 10^{7}$ $\left[\text{M}\cdot
\text{L}\cdot
\text{T}^{-2}\right]/\left[\text{N}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-1}2^{-1}$ |
specific force |
$4.42271606929(68)
\times 10^{-23}$ $\left[\text{L}\cdot
\text{T}^{-2}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$6.7978618435(31)
\times 10^{-14}$ $\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-2}\right]/\left[\text{Pa}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\tau^{-3}2^{-3}$ |
compressibility |
$1.47105078483(68)
\times 10^{13}$
$\left[\text{M}^{-1}\text{L}\cdot
\text{T}^{2}\right]/\left[\text{Pa}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{4}\alpha^{-3}\tau^{3}2^{3}$ |
viscosity |
$1405.16472176(65)$
$\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}\right]/\left[\text{Pa} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-2}2^{-3}$ |
diffusivity |
$17275.9854742(53)$
$\left[\text{L}^{2}\text{T}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2^{2}$ |
rotational inertia |
$1.9601023203644(38)
\times 10^{50}$ $\left[\text{M}\cdot
\text{L}^{2}\right]/\left[\text{kg}\cdot
\text{m}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot
\tau^{2}$ |
impulse |
$5.01793431275(77)
\times 10^{23}$ $\left[\text{M}\cdot
\text{L}\cdot \text{T}^{-1}\right]/\left[\text{N} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha\cdot
2^{-1}$ |
momentum |
$5.01793431275(77)
\times 10^{23}$ $\left[\text{M}\cdot
\text{L}\cdot \text{T}^{-1}\right]/\left[\text{N} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha\cdot
2^{-1}$ |
angular momentum |
$9.482521562467288
\times 10^{33}$ $\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
yank |
$1.17439762463(18)
\times 10^{-9}$ $\left[\text{M}\cdot
\text{L}\cdot \text{T}^{-3}\right]/\left[\text{N} \cdot
\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha\cdot
\tau^{-2}2^{-1}$ |
energy |
$4.5874245567925(88)
\times 10^{17}$ $\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\right]/\left[\text{J}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}$ |
specific energy |
$8.3577220980(26)
\times 10^{-13}$
$\left[\text{L}^{2}\text{T}^{-2}\right]/\left[\text{J}
\cdot \text{kg}^{-1}\right]$ |
$\text{c}^{-2}\alpha^{-2}2^{2}$ |
action |
$9.482521562467288
\times 10^{33}$ $\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
fluence |
$0.00128460971172(39)$
$\left[\text{M}\cdot
\text{T}^{-2}\right]/\left[\text{N} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-2}$ |
power |
$22.192898719639(85)$
$\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-3}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-1}$ |
power density |
$3.2886482935(15)
\times 10^{-30}$ $\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-3}\right]/\left[\text{W} \cdot
\text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{3}\tau^{-4}2^{-3}$ |
irradiance |
$6.2146445949(19)
\times 10^{-20}$ $\left[\text{M}\cdot
\text{T}^{-3}\right]/\left[\text{W} \cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-2}$ |
radiance |
$6.2146445949(19)
\times 10^{-20}$ $\left[\text{M}\cdot
\text{T}^{-3}\right]/\left[\text{W} \cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-2}$ |
radiant intensity |
$22.192898719639(85)$
$\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-3}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-1}$ |
spectral flux |
$1.17439762463(18)
\times 10^{-9}$ $\left[\text{M}\cdot
\text{L}\cdot \text{T}^{-3}\right]/\left[\text{N} \cdot
\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha\cdot
\tau^{-2}2^{-1}$ |
spectral exposure |
$2.65537648411(81)
\times 10^{13}$ $\left[\text{M}\cdot
\text{T}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2}
\cdot \text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$ |
sound exposure |
$9.5521156458(88)
\times 10^{-11}$
$\left[\text{M}^{2}\text{L}^{-2}\text{T}^{-3}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ |
$\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{6}\tau^{-5}2^{-6}$ |
impedance |
$2.0822392886(19)
\times 10^{-28}$ $\left[\text{M}\cdot
\text{L}^{-4}\text{T}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{6}\tau^{-5}2^{-6}$ |
specific impedance |
$7.4358114832(46)
\times 10^{-8}$ $\left[\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{4}\tau^{-3}2^{-4}$ |
admittance |
$4.8025220034(44)
\times 10^{27}$
$\left[\text{M}^{-1}\text{L}^{4}\text{T}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{6}\alpha^{-6}\tau^{5}2^{6}$ |
compliance |
$778.44655141(24)$
$\left[\text{M}^{-1}\text{T}^{2}\right]/\left[\text{m}
\cdot \text{N}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{2}$ |
inertance |
$4.3041315902(40)
\times 10^{-12}$ $\left[\text{M}\cdot
\text{L}^{-4}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-5}\alpha^{6}\tau^{-4}2^{-6}$ |
Name |
Quantity |
Product |
charge |
$8.826826782777156
\times 10^{18}$
$\left[\text{Q}\right]/\left[\text{C}\right]$ |
$\text{e}^{-1}2^{1/2}$ |
charge density |
$1.30800078002(60)
\times 10^{-12}$
$\left[\text{L}^{-3}\text{Q}\right]/\left[\text{m}^{-3}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-5/2}$ |
linear charge
density |
$4.67095557803(72)
\times 10^{8}$
$\left[\text{L}^{-1}\text{Q}\right]/\left[\text{m}^{-1}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-1}2^{-1/2}$ |
exposure |
$1.60813904063(49)
\times 10^{-11}$
$\left[\text{M}^{-1}\text{Q}\right]/\left[\text{kg}^{-1}\text{C}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2^{5/2}$ |
mobility |
$897.85697575(28)$
$\left[\text{M}\cdot
\text{L}^{4}\text{T}^{-3}\text{Q}^{-1}\right]/\left[\text{m}^2
\text{s}^{-1} \text{V}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{e}\cdot
\alpha^{-2}\tau\cdot 2^{3/2}$ |
current |
$427.02145916692(82)$
$\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{1/2}$ |
current density |
$1.19578187449(37)
\times 10^{-18}$
$\left[\text{L}^{-2}\text{T}^{-1}\text{Q}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-3}2^{-3/2}$ |
resistance |
$0.00012170674028939736$
$\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-2}\right]/\left[\Omega\right]$ |
$\hbar^{-1}\text{e}^{2}\tau\cdot
2^{-1}$ |
conductance |
$8216.471804455321$
$\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot
\text{Q}^{2}\right]/\left[\text{S}\right]$ |
$\hbar\cdot
\text{e}^{-2}\tau^{-1}2$ |
resistivity |
$2.29992406668(35)
\times 10^{6}$ $\left[\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-2}\right]/\left[\Omega
\cdot \text{m}\right]$ |
$\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-1}\tau^{2}$ |
conductivity |
$4.34796963294(67)
\times 10^{-7}$
$\left[\text{M}^{-1}\text{L}^{-3}\text{T}\cdot
\text{Q}^{2}\right]/\left[\text{S} \cdot
\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-2}$ |
capacitance |
$1.6984011418300(33)
\times 10^{20}$
$\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}\right]/\left[\text{F}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-2}\text{R}_{\infty}\cdot
2$ |
inductance |
$2.5157618938561(48)
\times 10^{12}$ $\left[\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\tau^{2}2^{-1}$ |
reluctance |
$3.9749389735260(76)
\times 10^{-13}$
$\left[\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}\right]/\left[\text{H}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\tau^{-2}2$ |
permeance |
$2.5157618938561(48)
\times 10^{12}$ $\left[\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\tau^{2}2^{-1}$ |
permittivity |
$8.9875517923(14)
\times 10^{9}$
$\left[\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}\right]/\left[\text{F}
\cdot \text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-2}\alpha\cdot
\tau^{-1}$ |
permeability |
$133.128386228(20)$
$\left[\text{M}\cdot \text{L}\cdot
\text{Q}^{-2}\right]/\left[\text{H} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha\cdot
\tau\cdot 2^{-2}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$12.2946336516(94)$
$\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{5}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$56848.6777438(87)$
$\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{Wb} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha\cdot 2^{-3/2}$ |
electric potential |
$0.051971389828828(99)$
$\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\text{Q}^{-1}\right]/\left[\text{V}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{-1}2^{-1/2}$ |
magnetic potential |
$427.02145916692(82)$
$\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{1/2}$ |
electric field |
$2.75020751163(42)
\times 10^{-12}$ $\left[\text{M}\cdot
\text{L}\cdot
\text{T}^{-2}\text{Q}^{-1}\right]/\left[\text{V} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-1}2^{-3/2}$ |
magnetic field |
$2.25970024757(35)
\times 10^{-8}$
$\left[\text{L}^{-1}\text{T}^{-1}\text{Q}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-2}2^{-1/2}$ |
electric flux |
$9.8211693093(15)
\times 10^{8}$ $\left[\text{M}\cdot
\text{L}^{3}\text{T}^{-2}\text{Q}^{-1}\right]/\left[\text{V}
\cdot \text{m}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\alpha^{-1}\tau\cdot 2^{1/2}$ |
magnetic flux |
$1.0742843148309561
\times 10^{15}$ $\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{Wb}\right]$ |
$\hbar^{-1}\text{e}\cdot \tau\cdot
2^{-1/2}$ |
electric
displacement |
$0.0247176324503(76)$
$\left[\text{L}^{-2}\text{Q}\right]/\left[\text{m}^{-2}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-3/2}$ |
magnetic flux
density |
$3.00830247320(92)
\times 10^{-6}$ $\left[\text{M}\cdot
\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{T}\right]$ |
$\hbar^{-1}\text{e}\cdot
\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-5/2}$ |
electric dipole
moment |
$1.66802851690(26)
\times 10^{29}$ $\left[\text{L}\cdot
\text{Q}\right]/\left[\text{m}\cdot
\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-1}\tau\cdot 2^{3/2}$ |
magnetic dipole
moment |
$1.52492131282(47)
\times 10^{23}$
$\left[\text{L}^{2}\text{T}^{-1}\text{Q}\right]/\left[\text{J}
\cdot \text{T}^{-1}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2^{5/2}$ |
electric
polarizability |
$6.0651005782(19)
\times 10^{40}$
$\left[\text{M}^{-1}\text{T}^{2}\text{Q}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-2}\text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$ |
magnetic
polarizability |
$6.7483344946(31)
\times 10^{30}$
$\left[\text{a}_0^3\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$ |
magnetic moment |
$2.03010313501(31)
\times 10^{25}$ $\left[\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{Wb}
\cdot \text{m}\right]$ |
$\hbar^{-1}\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-1}\tau^{2}2^{1/2}$ |
specific
magnetization |
$27037.274285(12)$
$\left[\text{L}^{-3}\text{T}\cdot
\text{Q}\right]/\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]$ |
$\text{c}\cdot
\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{3}\tau^{-2}2^{-5/2}$ |
pole strength |
$8.0695360716(12)
\times 10^{12}$ $\left[\text{L}\cdot
\text{T}^{-1}\text{Q}\right]/\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\alpha^{-1}2^{3/2}$ |
Name |
Quantity |
Product |
temperature |
$6.333623126911(12)
\times 10^{-6}$
$\left[\text{T}^{-1}\right]/\left[\text{K}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}$ |
entropy |
$7.24297051603992
\times 10^{22}$ $\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}$ |
specific entropy |
$1.31957995139(40)
\times 10^{-7}$
$\left[\text{L}^{2}\text{T}^{-1}\right]/\left[\text{J}
\cdot \text{K}^{-1} \text{kg}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2^{2}$ |
volume heat capacity |
$1.07329749612(49)
\times 10^{-8}$ $\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$ |
thermal conductivity |
$0.000185422719524(28)$
$\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-2}\right]/\left[\text{W} \cdot \text{m}^{-1}
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-2}2^{-1}$ |
thermal conductance |
$3.5039815718342(67)
\times 10^{6}$ $\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\right]/\left[\text{W} \cdot
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$ |
thermal resistivity |
$5393.08237183(83)$
$\left[\text{M}^{-1}\text{L}^{-1}\text{T}^{2}\right]/\left[\text{K}
\cdot \text{m} \cdot \text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-1}\tau^{2}2$ |
thermal resistance |
$2.8538962876923(55)
\times 10^{-7}$
$\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\right]/\left[\text{K}
\cdot \text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \tau$ |
thermal expansion |
$157887.51240204(30)$
$\left[\text{T}\right]/\left[\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}$ |
lapse rate |
$3.35160902120(51)
\times 10^{-16}$
$\left[\text{L}^{-1}\text{T}^{-1}\right]/\left[\text{m}^{-1}\text{K}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-1}2^{-1}$ |
Name |
Quantity |
Product |
molar mass |
$1000.000000340000000(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molality |
$0.00099999999966(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar amount |
$5.48884552687(16)
\times 10^{26}$
$\left[\text{M}\right]/\left[\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\mu_\text{eu}^{-1}2^{-1}$ |
molarity |
$8.1336299071(37)
\times 10^{-5}$ $\left[\text{M}\cdot
\text{L}^{-3}\right]/\left[\text{m}^{-3}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-3}2^{-4}$ |
molar volume |
$12294.6336558(57)$
$\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot
\tau^{3}2^{4}$ |
molar entropy |
$0.0001319579951847(38)$
$\left[\text{L}^{2}\text{T}^{-1}\right]/\left[\text{J}
\cdot \text{K}^{-1} \text{mol}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}\cdot
2$ |
molar energy |
$8.35772210083(24)
\times 10^{-10}$
$\left[\text{L}^{2}\text{T}^{-2}\right]/\left[\text{J}
\cdot \text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\mu_\text{eu}\cdot
2$ |
molar conductivity |
$2.82880641205(44)
\times 10^{-13}$
$\left[\text{M}^{-2}\text{L}^{-1}\text{T}\cdot
\text{Q}^{2}\right]/\left[\text{S} \cdot \text{m}^2
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}\cdot
\alpha^{-1}\mu_\text{eu}\cdot 2^{3}$ |
molar susceptibility |
$12294.6336558(57)$
$\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot
\tau^{3}2^{4}$ |
catalysis |
$2.655376483198(77)
\times 10^{10}$ $\left[\text{M}\cdot
\text{T}^{-1}\right]/\left[\text{kat}\right]$ |
$\text{N}_\text{A}\cdot
\text{c}^{-1}\text{R}_{\infty}^{-1}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$ |
specificity |
$5.9478593302(27)
\times 10^{-13}$
$\left[\text{M}^{-1}\text{L}^{3}\text{T}^{-1}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\mu_\text{eu}\cdot
\tau^{2}2^{4}$ |
diffusion flux |
$3.17715335839(98)
\times 10^{22}$ $\left[\text{M}\cdot
\text{L}^{-2}\text{T}\right]/\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}\tau^{-1}2^{-3}$ |
|
Unified |
SI2019 |
Rydberg |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{s}$ |
$\text{T}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{s}$ |
$\text{T}$ |
length |
$\text{L}$ |
$\text{m}$ |
$\text{a}_0$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{m}$ |
$\text{a}_0$ |
area |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
$\text{a}_0^2$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{m}^{2}$ |
$\text{a}_0^2$ |
volume |
$\text{L}^{3}$ |
$\text{m}^{3}$ |
$\text{a}_0^3$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{m}^{-1}$ |
$\text{a}_0^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{m}^{-1}$ |
$\text{a}_0^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{m}^{-2}$ |
$\text{a}_0^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{m}^{-3}$ |
$\text{a}_0^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{Hz}$ |
$\text{T}^{-1}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{Hz}$ |
$\text{T}^{-1}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
$\text{T}^{-2}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{m}^{-1}\text{s}$ |
$\text{L}^{-1}\text{T}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
$\text{L}\cdot
\text{T}^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
$\text{L}\cdot
\text{T}^{-3}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
$\text{L}\cdot
\text{T}^{-4}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
$\text{L}\cdot
\text{T}^{-5}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
$\text{L}\cdot
\text{T}^{-6}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
$\text{L}^{3}\text{T}^{-1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{m}^{2}$ |
$\text{a}_0^2$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{Hz}$ |
$\text{T}^{-1}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{L}^{-2}\text{T}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{L}^{-2}\text{T}$ |
|
Unified |
SI2019 |
Rydberg |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{kg}$ |
$\text{M}$ |
mass |
$\text{M}$ |
$\text{kg}$ |
$\text{M}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
$\text{M}\cdot
\text{L}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
$\text{M}\cdot
\text{L}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}^{-2}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{M}^{-1}\text{L}^{3}$ |
force |
$\text{F}$ |
$\text{N}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{Pa}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-2}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{Pa}^{-1}$ |
$\text{M}^{-1}\text{L}\cdot
\text{T}^{2}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{Pa} \cdot
\text{s}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
$\text{M}\cdot
\text{L}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{N} \cdot
\text{s}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{J}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
$\text{L}^{2}\text{T}^{-2}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{J} \cdot
\text{s}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
$\text{M}\cdot
\text{T}^{-2}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{W}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-3}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-3}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{M}\cdot
\text{T}^{-3}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{M}\cdot
\text{T}^{-3}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{W}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-3}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
$\text{M}^{2}\text{L}^{-2}\text{T}^{-3}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
$\text{M}\cdot
\text{L}^{-4}\text{T}^{-1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
$\text{M}^{-1}\text{L}^{4}\text{T}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
$\text{M}^{-1}\text{T}^{2}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
$\text{M}\cdot
\text{L}^{-4}$ |
|
Unified |
SI2019 |
Rydberg |
charge |
$\text{Q}$ |
$\text{C}$ |
$\text{Q}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
$\text{L}^{-3}\text{Q}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
$\text{L}^{-1}\text{Q}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{kg}^{-1}\text{C}$ |
$\text{M}^{-1}\text{Q}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
$\text{M}\cdot
\text{L}^{4}\text{T}^{-3}\text{Q}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
$\text{T}^{-1}\text{Q}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\Omega$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-2}$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S}$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}\cdot
\text{Q}^{2}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-2}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
$\text{M}^{-1}\text{L}^{-3}\text{T}\cdot
\text{Q}^{2}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{F}$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
$\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{H}^{-1}$ |
$\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H}$ |
$\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
$\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{Q}^{-2}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{M}^{-1}\text{L}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}\text{Q}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{V}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\text{Q}^{-1}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{s}^{-1}\text{C}$ |
$\text{T}^{-1}\text{Q}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}\text{Q}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
$\text{L}^{-1}\text{T}^{-1}\text{Q}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-2}\text{Q}^{-1}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-1}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{m}^{-2}\text{C}$ |
$\text{L}^{-2}\text{Q}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}$ |
$\text{M}\cdot
\text{T}^{-1}\text{Q}^{-1}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
$\text{L}\cdot
\text{Q}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}\text{Q}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
$\text{M}^{-1}\text{T}^{2}\text{Q}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}$ |
$\text{a}_0^3$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
$\text{L}^{-3}\text{T}\cdot \text{Q}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
$\text{L}\cdot
\text{T}^{-1}\text{Q}$ |
|
Unified |
SI2019 |
Rydberg |
temperature |
$\Theta$ |
$\text{K}$ |
$\text{T}^{-1}$ |
entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}$ |
$\text{J} \cdot
\text{K}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
specific entropy |
$\text{F}\cdot
\text{M}^{-1}\text{L}\cdot \Theta^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{kg}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
volume heat capacity |
$\text{F}\cdot
\text{L}^{-2}\Theta^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
thermal conductivity |
$\text{F}\cdot
\text{T}^{-1}\Theta^{-1}$ |
$\text{W} \cdot
\text{m}^{-1} \text{K}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}$ |
thermal conductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\Theta^{-1}$ |
$\text{W} \cdot
\text{K}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}$ |
thermal resistivity |
$\text{F}^{-1}\text{T}\cdot \Theta$ |
$\text{K} \cdot
\text{m} \cdot \text{W}^{-1}$ |
$\text{M}^{-1}\text{L}^{-1}\text{T}^{2}$ |
thermal resistance |
$\text{F}^{-1}\text{L}^{-1}\text{T}\cdot
\Theta$ |
$\text{K} \cdot
\text{W}^{-1}$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}^{2}$ |
thermal expansion |
$\Theta^{-1}$ |
$\text{K}^{-1}$ |
$\text{T}$ |
lapse rate |
$\text{L}^{-1}\Theta$ |
$\text{m}^{-1}\text{K}$ |
$\text{L}^{-1}\text{T}^{-1}$ |
|
Unified |
SI2019 |
Rydberg |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\text{kg}^{-1}\text{mol}$ |
$\mathbb{1}$ |
molar amount |
$\text{N}$ |
$\text{mol}$ |
$\text{M}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{m}^{-3}\text{mol}$ |
$\text{M}\cdot
\text{L}^{-3}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
$\text{L}^{2}\text{T}^{-2}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
$\text{M}^{-2}\text{L}^{-1}\text{T}\cdot
\text{Q}^{2}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{kat}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}\text{T}^{-1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}$ |