SI2019 -> Rydberg

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $2.0670686667591(40) \times 10^{16}$ $\left[\text{T}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau$
angular time $2.0670686667591(40) \times 10^{16}$ $\left[\text{T}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau$
length $1.88972612463(29) \times 10^{10}$ $\left[\text{a}_0\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$
angular length $1.88972612463(29) \times 10^{10}$ $\left[\text{a}_0\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$
area $3.5710648261(11) \times 10^{20}$ $\left[\text{a}_0^2\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$
angular area $3.5710648261(11) \times 10^{20}$ $\left[\text{a}_0^2\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$
volume $6.7483344946(31) \times 10^{30}$ $\left[\text{a}_0^3\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$
wavenumber $5.29177210902(81) \times 10^{-11}$ $\left[\text{a}_0^{-1}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$
angular wavenumber $5.29177210902(81) \times 10^{-11}$ $\left[\text{a}_0^{-1}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$
fuel efficiency $2.80028520538(86) \times 10^{-21}$ $\left[\text{a}_0^{-2}\right]/\left[\text{m}^{-2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$
number density $1.48184711472(68) \times 10^{-31}$ $\left[\text{a}_0^{-3}\right]/\left[\text{m}^{-3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$
frequency $4.8377686531713(93) \times 10^{-17}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$
angular frequency $4.8377686531713(93) \times 10^{-17}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$
frequency drift $2.3404005541607(90) \times 10^{-33}$ $\left[\text{T}^{-2}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-2}$
stagnance $1.09384563182(17) \times 10^{6}$ $\left[\text{L}^{-1}\text{T}\right]/\left[\text{m}^{-1}\text{s}\right]$ $\text{c}\cdot \alpha\cdot 2^{-1}$
speed $9.1420578088(14) \times 10^{-7}$ $\left[\text{L}\cdot \text{T}^{-1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}^{-1}\alpha^{-1}2$
acceleration $4.42271606929(68) \times 10^{-23}$ $\left[\text{L}\cdot \text{T}^{-2}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2$
jerk $2.13960771619(33) \times 10^{-39}$ $\left[\text{L}\cdot \text{T}^{-3}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ $\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{-1}\tau^{-2}2$
snap $1.03509271395(16) \times 10^{-55}$ $\left[\text{L}\cdot \text{T}^{-4}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ $\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{-1}\tau^{-3}2$
crackle $5.00753908466(77) \times 10^{-72}$ $\left[\text{L}\cdot \text{T}^{-5}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ $\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{-1}\tau^{-4}2$
pop $2.42253156133(37) \times 10^{-88}$ $\left[\text{L}\cdot \text{T}^{-6}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ $\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{-1}\tau^{-5}2$
volume flow $3.2646881079(15) \times 10^{14}$ $\left[\text{L}^{3}\text{T}^{-1}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\tau^{2}2^{3}$
etendue $3.5710648261(11) \times 10^{20}$ $\left[\text{a}_0^2\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$
photon intensity $4.8377686531713(93) \times 10^{-17}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$
photon irradiance $5.7883818060(18) \times 10^{-5}$ $\left[\text{L}^{-2}\text{T}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-2}$
photon radiance $5.7883818060(18) \times 10^{-5}$ $\left[\text{L}^{-2}\text{T}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-2}$

Mechanical Ratios

Name Quantity Product
inertia $5.4888455288(17) \times 10^{29}$ $\left[\text{M}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-2}$
mass $5.4888455288(17) \times 10^{29}$ $\left[\text{M}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-2}$
mass flow $2.65537648411(81) \times 10^{13}$ $\left[\text{M}\cdot \text{T}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$
linear density $2.9045719680(13) \times 10^{19}$ $\left[\text{M}\cdot \text{L}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{3}\tau^{-1}2^{-3}$
area density $1.53703329288(94) \times 10^{9}$ $\left[\text{M}\cdot \text{L}^{-2}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-3}\alpha^{4}\tau^{-2}2^{-4}$
density $0.081336299099(62)$ $\left[\text{M}\cdot \text{L}^{-3}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-5}$
specific weight $3.5972735704(22) \times 10^{-24}$ $\left[\text{M}\cdot \text{L}^{-2}\text{T}^{-2}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{4}\tau^{-4}2^{-4}$
specific volume $12.2946336516(94)$ $\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{5}$
force $2.42756053219(37) \times 10^{7}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]/\left[\text{N}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \tau^{-1}2^{-1}$
specific force $4.42271606929(68) \times 10^{-23}$ $\left[\text{L}\cdot \text{T}^{-2}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $6.7978618435(31) \times 10^{-14}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-2}\right]/\left[\text{Pa}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\tau^{-3}2^{-3}$
compressibility $1.47105078483(68) \times 10^{13}$ $\left[\text{M}^{-1}\text{L}\cdot \text{T}^{2}\right]/\left[\text{Pa}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-3}\tau^{3}2^{3}$
viscosity $1405.16472176(65)$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]/\left[\text{Pa} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-2}2^{-3}$
diffusivity $17275.9854742(53)$ $\left[\text{L}^{2}\text{T}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{2}$
rotational inertia $1.9601023203644(38) \times 10^{50}$ $\left[\text{M}\cdot \text{L}^{2}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \tau^{2}$
impulse $5.01793431275(77) \times 10^{23}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha\cdot 2^{-1}$
momentum $5.01793431275(77) \times 10^{23}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha\cdot 2^{-1}$
angular momentum $9.482521562467288 \times 10^{33}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
yank $1.17439762463(18) \times 10^{-9}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha\cdot \tau^{-2}2^{-1}$
energy $4.5874245567925(88) \times 10^{17}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]/\left[\text{J}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}$
specific energy $8.3577220980(26) \times 10^{-13}$ $\left[\text{L}^{2}\text{T}^{-2}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ $\text{c}^{-2}\alpha^{-2}2^{2}$
action $9.482521562467288 \times 10^{33}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
fluence $0.00128460971172(39)$ $\left[\text{M}\cdot \text{T}^{-2}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-2}$
power $22.192898719639(85)$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-3}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-1}$
power density $3.2886482935(15) \times 10^{-30}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-3}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{3}\tau^{-4}2^{-3}$
irradiance $6.2146445949(19) \times 10^{-20}$ $\left[\text{M}\cdot \text{T}^{-3}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-2}$
radiance $6.2146445949(19) \times 10^{-20}$ $\left[\text{M}\cdot \text{T}^{-3}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-2}$
radiant intensity $22.192898719639(85)$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-3}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-1}$
spectral flux $1.17439762463(18) \times 10^{-9}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha\cdot \tau^{-2}2^{-1}$
spectral exposure $2.65537648411(81) \times 10^{13}$ $\left[\text{M}\cdot \text{T}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$
sound exposure $9.5521156458(88) \times 10^{-11}$ $\left[\text{M}^{2}\text{L}^{-2}\text{T}^{-3}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ $\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{6}\tau^{-5}2^{-6}$
impedance $2.0822392886(19) \times 10^{-28}$ $\left[\text{M}\cdot \text{L}^{-4}\text{T}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{6}\tau^{-5}2^{-6}$
specific impedance $7.4358114832(46) \times 10^{-8}$ $\left[\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{4}\tau^{-3}2^{-4}$
admittance $4.8025220034(44) \times 10^{27}$ $\left[\text{M}^{-1}\text{L}^{4}\text{T}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-6}\tau^{5}2^{6}$
compliance $778.44655141(24)$ $\left[\text{M}^{-1}\text{T}^{2}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{2}$
inertance $4.3041315902(40) \times 10^{-12}$ $\left[\text{M}\cdot \text{L}^{-4}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-5}\alpha^{6}\tau^{-4}2^{-6}$

Electromagnetic Ratios

Name Quantity Product
charge $8.826826782777156 \times 10^{18}$ $\left[\text{Q}\right]/\left[\text{C}\right]$ $\text{e}^{-1}2^{1/2}$
charge density $1.30800078002(60) \times 10^{-12}$ $\left[\text{L}^{-3}\text{Q}\right]/\left[\text{m}^{-3}\text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-5/2}$
linear charge density $4.67095557803(72) \times 10^{8}$ $\left[\text{L}^{-1}\text{Q}\right]/\left[\text{m}^{-1}\text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1/2}$
exposure $1.60813904063(49) \times 10^{-11}$ $\left[\text{M}^{-1}\text{Q}\right]/\left[\text{kg}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{5/2}$
mobility $897.85697575(28)$ $\left[\text{M}\cdot \text{L}^{4}\text{T}^{-3}\text{Q}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{e}\cdot \alpha^{-2}\tau\cdot 2^{3/2}$
current $427.02145916692(82)$ $\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{1/2}$
current density $1.19578187449(37) \times 10^{-18}$ $\left[\text{L}^{-2}\text{T}^{-1}\text{Q}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-3}2^{-3/2}$
resistance $0.00012170674028939736$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}\right]/\left[\Omega\right]$ $\hbar^{-1}\text{e}^{2}\tau\cdot 2^{-1}$
conductance $8216.471804455321$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}\right]/\left[\text{S}\right]$ $\hbar\cdot \text{e}^{-2}\tau^{-1}2$
resistivity $2.29992406668(35) \times 10^{6}$ $\left[\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-2}\right]/\left[\Omega \cdot \text{m}\right]$ $\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-1}\tau^{2}$
conductivity $4.34796963294(67) \times 10^{-7}$ $\left[\text{M}^{-1}\text{L}^{-3}\text{T}\cdot \text{Q}^{2}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{e}^{-2}\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-2}$
capacitance $1.6984011418300(33) \times 10^{20}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}\right]/\left[\text{F}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}\cdot 2$
inductance $2.5157618938561(48) \times 10^{12}$ $\left[\text{M}\cdot \text{L}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \tau^{2}2^{-1}$
reluctance $3.9749389735260(76) \times 10^{-13}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}\right]/\left[\text{H}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\tau^{-2}2$
permeance $2.5157618938561(48) \times 10^{12}$ $\left[\text{M}\cdot \text{L}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \tau^{2}2^{-1}$
permittivity $8.9875517923(14) \times 10^{9}$ $\left[\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$
permeability $133.128386228(20)$ $\left[\text{M}\cdot \text{L}\cdot \text{Q}^{-2}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha\cdot \tau\cdot 2^{-2}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $12.2946336516(94)$ $\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{5}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $56848.6777438(87)$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha\cdot 2^{-3/2}$
electric potential $0.051971389828828(99)$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{Q}^{-1}\right]/\left[\text{V}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}2^{-1/2}$
magnetic potential $427.02145916692(82)$ $\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{1/2}$
electric field $2.75020751163(42) \times 10^{-12}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\text{Q}^{-1}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha\cdot \tau^{-1}2^{-3/2}$
magnetic field $2.25970024757(35) \times 10^{-8}$ $\left[\text{L}^{-1}\text{T}^{-1}\text{Q}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \tau^{-2}2^{-1/2}$
electric flux $9.8211693093(15) \times 10^{8}$ $\left[\text{M}\cdot \text{L}^{3}\text{T}^{-2}\text{Q}^{-1}\right]/\left[\text{V} \cdot \text{m}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \alpha^{-1}\tau\cdot 2^{1/2}$
magnetic flux $1.0742843148309561 \times 10^{15}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{Wb}\right]$ $\hbar^{-1}\text{e}\cdot \tau\cdot 2^{-1/2}$
electric displacement $0.0247176324503(76)$ $\left[\text{L}^{-2}\text{Q}\right]/\left[\text{m}^{-2}\text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-3/2}$
magnetic flux density $3.00830247320(92) \times 10^{-6}$ $\left[\text{M}\cdot \text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{T}\right]$ $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-5/2}$
electric dipole moment $1.66802851690(26) \times 10^{29}$ $\left[\text{L}\cdot \text{Q}\right]/\left[\text{m}\cdot \text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2^{3/2}$
magnetic dipole moment $1.52492131282(47) \times 10^{23}$ $\left[\text{L}^{2}\text{T}^{-1}\text{Q}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{5/2}$
electric polarizability $6.0651005782(19) \times 10^{40}$ $\left[\text{M}^{-1}\text{T}^{2}\text{Q}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$
magnetic polarizability $6.7483344946(31) \times 10^{30}$ $\left[\text{a}_0^3\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$
magnetic moment $2.03010313501(31) \times 10^{25}$ $\left[\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-1}\tau^{2}2^{1/2}$
specific magnetization $27037.274285(12)$ $\left[\text{L}^{-3}\text{T}\cdot \text{Q}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ $\text{c}\cdot \text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{3}\tau^{-2}2^{-5/2}$
pole strength $8.0695360716(12) \times 10^{12}$ $\left[\text{L}\cdot \text{T}^{-1}\text{Q}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\alpha^{-1}2^{3/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $6.333623126911(12) \times 10^{-6}$ $\left[\text{T}^{-1}\right]/\left[\text{K}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}$
entropy $7.24297051603992 \times 10^{22}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}$
specific entropy $1.31957995139(40) \times 10^{-7}$ $\left[\text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{2}$
volume heat capacity $1.07329749612(49) \times 10^{-8}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$
thermal conductivity $0.000185422719524(28)$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \tau^{-2}2^{-1}$
thermal conductance $3.5039815718342(67) \times 10^{6}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$
thermal resistivity $5393.08237183(83)$ $\left[\text{M}^{-1}\text{L}^{-1}\text{T}^{2}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-1}\tau^{2}2$
thermal resistance $2.8538962876923(55) \times 10^{-7}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \tau$
thermal expansion $157887.51240204(30)$ $\left[\text{T}\right]/\left[\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}$
lapse rate $3.35160902120(51) \times 10^{-16}$ $\left[\text{L}^{-1}\text{T}^{-1}\right]/\left[\text{m}^{-1}\text{K}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \tau^{-1}2^{-1}$

Molar Ratios

Name Quantity Product
molar mass $1000.000000340000000(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molality $0.00099999999966(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molar amount $5.48884552687(16) \times 10^{26}$ $\left[\text{M}\right]/\left[\text{mol}\right]$ $\text{N}_\text{A}\cdot \mu_\text{eu}^{-1}2^{-1}$
molarity $8.1336299071(37) \times 10^{-5}$ $\left[\text{M}\cdot \text{L}^{-3}\right]/\left[\text{m}^{-3}\text{mol}\right]$ $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-3}2^{-4}$
molar volume $12294.6336558(57)$ $\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot \tau^{3}2^{4}$
molar entropy $0.0001319579951847(38)$ $\left[\text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}\cdot 2$
molar energy $8.35772210083(24) \times 10^{-10}$ $\left[\text{L}^{2}\text{T}^{-2}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\mu_\text{eu}\cdot 2$
molar conductivity $2.82880641205(44) \times 10^{-13}$ $\left[\text{M}^{-2}\text{L}^{-1}\text{T}\cdot \text{Q}^{2}\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar\cdot \text{e}^{-2}\text{R}_{\infty}\cdot \alpha^{-1}\mu_\text{eu}\cdot 2^{3}$
molar susceptibility $12294.6336558(57)$ $\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot \tau^{3}2^{4}$
catalysis $2.655376483198(77) \times 10^{10}$ $\left[\text{M}\cdot \text{T}^{-1}\right]/\left[\text{kat}\right]$ $\text{N}_\text{A}\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$
specificity $5.9478593302(27) \times 10^{-13}$ $\left[\text{M}^{-1}\text{L}^{3}\text{T}^{-1}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\mu_\text{eu}\cdot \tau^{2}2^{4}$
diffusion flux $3.17715335839(98) \times 10^{22}$ $\left[\text{M}\cdot \text{L}^{-2}\text{T}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ $\text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}\tau^{-1}2^{-3}$

Photometric Ratios

Name Quantity Product
luminous flux $0.03249232641699(12)$ $\left[\text{T}^{2}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\tau^{-1}$
luminous intensity $0.03249232641699(12)$ $\left[\text{T}^{2}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\tau^{-1}$
luminance $9.0987780954(28) \times 10^{-23}$ $\left[\text{L}^{-2}\text{T}^{2}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-2}$
illuminance $9.0987780954(28) \times 10^{-23}$ $\left[\text{L}^{-2}\text{T}^{2}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-2}$
luminous energy $6.716386984667(13) \times 10^{14}$ $\left[\text{T}^{3}\right]/\left[\text{s}\cdot \text{lm}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}$
luminous exposure $1.88077991068(58) \times 10^{-6}$ $\left[\text{L}^{-2}\text{T}^{3}\right]/\left[\text{lx} \cdot \text{s}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-2}$
luminous efficacy $0.0014640866354352104$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{5}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ $\text{K}_\text{cd}^{-1}$

Kinematic

Unified SI2019 Rydberg
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{s}$ $\text{T}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{s}$ $\text{T}$
length $\text{L}$ $\text{m}$ $\text{a}_0$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}$ $\text{a}_0$
area $\text{L}^{2}$ $\text{m}^{2}$ $\text{a}_0^2$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}^{2}$ $\text{a}_0^2$
volume $\text{L}^{3}$ $\text{m}^{3}$ $\text{a}_0^3$
wavenumber $\text{L}^{-1}$ $\text{m}^{-1}$ $\text{a}_0^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}^{-1}$ $\text{a}_0^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{m}^{-2}$ $\text{a}_0^{-2}$
number density $\text{L}^{-3}$ $\text{m}^{-3}$ $\text{a}_0^{-3}$
frequency $\text{T}^{-1}$ $\text{Hz}$ $\text{T}^{-1}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{Hz}$ $\text{T}^{-1}$
frequency drift $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$ $\text{T}^{-2}$
stagnance $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$ $\text{L}^{-1}\text{T}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$ $\text{L}\cdot \text{T}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$ $\text{L}\cdot \text{T}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$ $\text{L}\cdot \text{T}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$ $\text{L}\cdot \text{T}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$ $\text{L}\cdot \text{T}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$ $\text{L}\cdot \text{T}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$ $\text{L}^{3}\text{T}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}^{2}$ $\text{a}_0^2$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{Hz}$ $\text{T}^{-1}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{L}^{-2}\text{T}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{L}^{-2}\text{T}$

Mechanical

Unified SI2019 Rydberg
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{kg}$ $\text{M}$
mass $\text{M}$ $\text{kg}$ $\text{M}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{M}\cdot \text{T}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$ $\text{M}\cdot \text{L}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$ $\text{M}\cdot \text{L}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$ $\text{M}\cdot \text{L}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{M}^{-1}\text{L}^{3}$
force $\text{F}$ $\text{N}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}\cdot \text{s}^{-2}$ $\text{L}\cdot \text{T}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{Pa}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-2}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{Pa}^{-1}$ $\text{M}^{-1}\text{L}\cdot \text{T}^{2}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{Pa} \cdot \text{s}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-1}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$ $\text{L}^{2}\text{T}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$ $\text{M}\cdot \text{L}^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{N} \cdot \text{s}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{J} \cdot \text{s}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$
energy $\text{F}\cdot \text{L}$ $\text{J}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{J} \cdot \text{kg}^{-1}$ $\text{L}^{2}\text{T}^{-2}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{J} \cdot \text{s}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{N} \cdot \text{m}^{-1}$ $\text{M}\cdot \text{T}^{-2}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{W}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-3}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-2}$ $\text{M}\cdot \text{T}^{-3}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{W} \cdot \text{m}^{-2}$ $\text{M}\cdot \text{T}^{-3}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{W}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{M}\cdot \text{T}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ $\text{M}^{2}\text{L}^{-2}\text{T}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ $\text{M}\cdot \text{L}^{-4}\text{T}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$ $\text{M}^{-1}\text{L}^{4}\text{T}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$ $\text{M}^{-1}\text{T}^{2}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$ $\text{M}\cdot \text{L}^{-4}$

Electromagnetic

Unified SI2019 Rydberg
charge $\text{Q}$ $\text{C}$ $\text{Q}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$ $\text{L}^{-3}\text{Q}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$ $\text{L}^{-1}\text{Q}$
exposure $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$ $\text{M}^{-1}\text{Q}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ $\text{M}\cdot \text{L}^{4}\text{T}^{-3}\text{Q}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$ $\text{T}^{-1}\text{Q}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$ $\text{L}^{-2}\text{T}^{-1}\text{Q}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\Omega$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{S}$ $\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\Omega \cdot \text{m}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-2}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$ $\text{M}^{-1}\text{L}^{-3}\text{T}\cdot \text{Q}^{2}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{F}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{H}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{H}^{-1}$ $\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{F} \cdot \text{m}^{-1}$ $\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H} \cdot \text{m}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{Q}^{-2}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{M}^{-1}\text{L}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}\text{Q}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{V}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{Q}^{-1}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{s}^{-1}\text{C}$ $\text{T}^{-1}\text{Q}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}\text{Q}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$ $\text{L}^{-1}\text{T}^{-1}\text{Q}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-2}\text{Q}^{-1}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-1}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}^{-2}\text{C}$ $\text{L}^{-2}\text{Q}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}$ $\text{M}\cdot \text{T}^{-1}\text{Q}^{-1}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$ $\text{L}\cdot \text{Q}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{J} \cdot \text{T}^{-1}$ $\text{L}^{2}\text{T}^{-1}\text{Q}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ $\text{M}^{-1}\text{T}^{2}\text{Q}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}$ $\text{a}_0^3$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}^{-3}\text{s}\cdot \text{C}$ $\text{L}^{-3}\text{T}\cdot \text{Q}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}\cdot \text{s}^{-1}\text{C}$ $\text{L}\cdot \text{T}^{-1}\text{Q}$

Thermodynamic

Unified SI2019 Rydberg
temperature $\Theta$ $\text{K}$ $\text{T}^{-1}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ $\text{L}^{2}\text{T}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{K}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ $\text{M}^{-1}\text{L}^{-1}\text{T}^{2}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{W}^{-1}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{2}$
thermal expansion $\Theta^{-1}$ $\text{K}^{-1}$ $\text{T}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}^{-1}\text{K}$ $\text{L}^{-1}\text{T}^{-1}$

Molar

Unified SI2019 Rydberg
molar mass $\text{M}\cdot \text{N}^{-1}$ $\text{kg}\cdot \text{mol}^{-1}$ $\mathbb{1}$
molality $\text{M}^{-1}\text{N}$ $\text{kg}^{-1}\text{mol}$ $\mathbb{1}$
molar amount $\text{N}$ $\text{mol}$ $\text{M}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}^{-3}\text{mol}$ $\text{M}\cdot \text{L}^{-3}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{M}^{-1}\text{L}^{3}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ $\text{L}^{2}\text{T}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{J} \cdot \text{mol}^{-1}$ $\text{L}^{2}\text{T}^{-2}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ $\text{M}^{-2}\text{L}^{-1}\text{T}\cdot \text{Q}^{2}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{M}^{-1}\text{L}^{3}$
catalysis $\text{T}^{-1}\text{N}$ $\text{kat}$ $\text{M}\cdot \text{T}^{-1}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ $\text{M}^{-1}\text{L}^{3}\text{T}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$ $\text{M}\cdot \text{L}^{-2}\text{T}$

Photometric

Unified SI2019 Rydberg
luminous flux $\text{J}$ $\text{cd}$ $\text{T}^{2}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{cd}$ $\text{T}^{2}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{lx}$ $\text{L}^{-2}\text{T}^{2}$
illuminance $\text{L}^{-2}\text{J}$ $\text{lx}$ $\text{L}^{-2}\text{T}^{2}$
luminous energy $\text{T}\cdot \text{J}$ $\text{s}\cdot \text{lm}$ $\text{T}^{3}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{lx} \cdot \text{s}$ $\text{L}^{-2}\text{T}^{3}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{lm} \cdot \text{W}^{-1}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{5}$