SI2019 -> Schrodinger

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $8.437700(93) \times 10^{37}$ $\left[\text{T}\right]/\left[\text{s}\right]$ $\hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau$
angular time $8.437700(93) \times 10^{37}$ $\left[\text{T}\right]/\left[\text{s}\right]$ $\hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau$
length $3.856897(43) \times 10^{31}$ $\left[\text{L}\right]/\left[\text{m}\right]$ $\hbar^{-1}\text{c}\cdot \alpha^{3/2}\text{m}_\text{P}\cdot \tau$
angular length $3.856897(43) \times 10^{31}$ $\left[\text{L}\right]/\left[\text{m}\right]$ $\hbar^{-1}\text{c}\cdot \alpha^{3/2}\text{m}_\text{P}\cdot \tau$
area $1.487565(33) \times 10^{63}$ $\left[\text{L}^{2}\right]/\left[\text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\alpha^{3}\text{m}_\text{P}^{2}\tau^{2}$
angular area $1.487565(33) \times 10^{63}$ $\left[\text{L}^{2}\right]/\left[\text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\alpha^{3}\text{m}_\text{P}^{2}\tau^{2}$
volume $5.73739(19) \times 10^{94}$ $\left[\text{L}^{3}\right]/\left[\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\alpha^{9/2}\text{m}_\text{P}^{3}\tau^{3}$
wavenumber $2.592758(29) \times 10^{-32}$ $\left[\text{L}^{-1}\right]/\left[\text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$
angular wavenumber $2.592758(29) \times 10^{-32}$ $\left[\text{L}^{-1}\right]/\left[\text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$
fuel efficiency $6.72239(15) \times 10^{-64}$ $\left[\text{L}^{-2}\right]/\left[\text{m}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$
number density $1.742954(58) \times 10^{-95}$ $\left[\text{L}^{-3}\right]/\left[\text{m}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\alpha^{-9/2}\text{m}_\text{P}^{-3}\tau^{-3}$
frequency $1.185157(13) \times 10^{-38}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ $\hbar\cdot \text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$
angular frequency $1.185157(13) \times 10^{-38}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ $\hbar\cdot \text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$
frequency drift $1.404597(31) \times 10^{-76}$ $\left[\text{T}^{-2}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ $\hbar^{2}\text{c}^{-4}\alpha^{-5}\text{m}_\text{P}^{-2}\tau^{-2}$
stagnance $2.18769126364(34) \times 10^{6}$ $\left[\text{L}^{-1}\text{T}\right]/\left[\text{m}^{-1}\text{s}\right]$ $\text{c}\cdot \alpha$
speed $4.57102890440(70) \times 10^{-7}$ $\left[\text{L}\cdot \text{T}^{-1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}^{-1}\alpha^{-1}$
acceleration $5.417387(60) \times 10^{-45}$ $\left[\text{L}\cdot \text{T}^{-2}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\hbar\cdot \text{c}^{-3}\alpha^{-7/2}\text{m}_\text{P}^{-1}\tau^{-1}$
jerk $6.42046(14) \times 10^{-83}$ $\left[\text{L}\cdot \text{T}^{-3}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ $\hbar^{2}\text{c}^{-5}\alpha^{-6}\text{m}_\text{P}^{-2}\tau^{-2}$
snap $7.60925(25) \times 10^{-121}$ $\left[\text{L}\cdot \text{T}^{-4}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ $\hbar^{3}\text{c}^{-7}\alpha^{-17/2}\text{m}_\text{P}^{-3}\tau^{-3}$
crackle $9.01815(40) \times 10^{-159}$ $\left[\text{L}\cdot \text{T}^{-5}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ $\hbar^{4}\text{c}^{-9}\alpha^{-11}\text{m}_\text{P}^{-4}\tau^{-4}$
pop $1.068793(59) \times 10^{-196}$ $\left[\text{L}\cdot \text{T}^{-6}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ $\hbar^{5}\text{c}^{-11}\alpha^{-27/2}\text{m}_\text{P}^{-5}\tau^{-5}$
volume flow $6.79970(15) \times 10^{56}$ $\left[\text{L}^{3}\text{T}^{-1}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ $\hbar^{-2}\text{c}\cdot \alpha^{2}\text{m}_\text{P}^{2}\tau^{2}$
etendue $1.487565(33) \times 10^{63}$ $\left[\text{L}^{2}\right]/\left[\text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\alpha^{3}\text{m}_\text{P}^{2}\tau^{2}$
photon intensity $1.185157(13) \times 10^{-38}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ $\hbar\cdot \text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$
photon irradiance $5.672154(63) \times 10^{-26}$ $\left[\text{L}^{-2}\text{T}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\hbar\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$
photon radiance $5.672154(63) \times 10^{-26}$ $\left[\text{L}^{-2}\text{T}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\hbar\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$

Mechanical Ratios

Name Quantity Product
inertia $5.378632(59) \times 10^{8}$ $\left[\text{M}\right]/\left[\text{kg}\right]$ $\alpha^{-1/2}\text{m}_\text{P}^{-1}$
mass $5.378632(59) \times 10^{8}$ $\left[\text{M}\right]/\left[\text{kg}\right]$ $\alpha^{-1/2}\text{m}_\text{P}^{-1}$
mass flow $6.37452(14) \times 10^{-30}$ $\left[\text{M}\cdot \text{T}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-1}$
linear density $1.394549(31) \times 10^{-23}$ $\left[\text{M}\cdot \text{L}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\alpha^{-2}\text{m}_\text{P}^{-2}\tau^{-1}$
area density $3.61573(12) \times 10^{-55}$ $\left[\text{M}\cdot \text{L}^{-2}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\alpha^{-7/2}\text{m}_\text{P}^{-3}\tau^{-2}$
density $9.37471(41) \times 10^{-87}$ $\left[\text{M}\cdot \text{L}^{-3}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\alpha^{-5}\text{m}_\text{P}^{-4}\tau^{-3}$
specific weight $5.07864(28) \times 10^{-131}$ $\left[\text{M}\cdot \text{L}^{-2}\text{T}^{-2}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ $\hbar^{4}\text{c}^{-6}\alpha^{-17/2}\text{m}_\text{P}^{-5}\tau^{-4}$
specific volume $1.066700(47) \times 10^{86}$ $\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\alpha^{5}\text{m}_\text{P}^{4}\tau^{3}$
force $2.913813(64) \times 10^{-36}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]/\left[\text{N}\right]$ $\hbar\cdot \text{c}^{-3}\alpha^{-4}\text{m}_\text{P}^{-2}\tau^{-1}$
specific force $5.417387(60) \times 10^{-45}$ $\left[\text{L}\cdot \text{T}^{-2}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\hbar\cdot \text{c}^{-3}\alpha^{-7/2}\text{m}_\text{P}^{-1}\tau^{-1}$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $1.958780(86) \times 10^{-99}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-2}\right]/\left[\text{Pa}\right]$ $\hbar^{3}\text{c}^{-5}\alpha^{-7}\text{m}_\text{P}^{-4}\tau^{-3}$
compressibility $5.10522(23) \times 10^{98}$ $\left[\text{M}^{-1}\text{L}\cdot \text{T}^{2}\right]/\left[\text{Pa}^{-1}\right]$ $\hbar^{-3}\text{c}^{5}\alpha^{7}\text{m}_\text{P}^{4}\tau^{3}$
viscosity $1.652760(55) \times 10^{-61}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]/\left[\text{Pa} \cdot \text{s}\right]$ $\hbar^{2}\text{c}^{-3}\alpha^{-9/2}\text{m}_\text{P}^{-3}\tau^{-2}$
diffusivity $1.762999(19) \times 10^{25}$ $\left[\text{L}^{2}\text{T}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ $\hbar^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot \tau$
rotational inertia $8.001067(88) \times 10^{71}$ $\left[\text{M}\cdot \text{L}^{2}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau^{2}$
impulse $245.8588(27)$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\text{c}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}$
momentum $245.8588(27)$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\text{c}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}$
angular momentum $9.482521562467288 \times 10^{33}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
yank $3.45333(11) \times 10^{-74}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{2}\text{c}^{-5}\alpha^{-13/2}\text{m}_\text{P}^{-3}\tau^{-2}$
energy $0.0001123828(12)$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]/\left[\text{J}\right]$ $\text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}$
specific energy $2.08943052449(64) \times 10^{-13}$ $\left[\text{L}^{2}\text{T}^{-2}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ $\text{c}^{-2}\alpha^{-2}$
action $9.482521562467288 \times 10^{33}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
fluence $7.55481(25) \times 10^{-68}$ $\left[\text{M}\cdot \text{T}^{-2}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ $\hbar^{2}\text{c}^{-4}\alpha^{-11/2}\text{m}_\text{P}^{-3}\tau^{-2}$
power $1.331913(29) \times 10^{-42}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-3}\right]/\left[\text{W}\right]$ $\hbar\cdot \text{c}^{-4}\alpha^{-5}\text{m}_\text{P}^{-2}\tau^{-1}$
power density $2.32146(13) \times 10^{-137}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-3}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ $\hbar^{4}\text{c}^{-7}\alpha^{-19/2}\text{m}_\text{P}^{-5}\tau^{-4}$
irradiance $8.95364(39) \times 10^{-106}$ $\left[\text{M}\cdot \text{T}^{-3}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{3}\text{c}^{-6}\alpha^{-8}\text{m}_\text{P}^{-4}\tau^{-3}$
radiance $8.95364(39) \times 10^{-106}$ $\left[\text{M}\cdot \text{T}^{-3}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{3}\text{c}^{-6}\alpha^{-8}\text{m}_\text{P}^{-4}\tau^{-3}$
radiant intensity $1.331913(29) \times 10^{-42}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-3}\right]/\left[\text{W}\right]$ $\hbar\cdot \text{c}^{-4}\alpha^{-5}\text{m}_\text{P}^{-2}\tau^{-1}$
spectral flux $3.45333(11) \times 10^{-74}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{2}\text{c}^{-5}\alpha^{-13/2}\text{m}_\text{P}^{-3}\tau^{-2}$
spectral exposure $6.37452(14) \times 10^{-30}$ $\left[\text{M}\cdot \text{T}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-1}$
sound exposure $3.23739(25) \times 10^{-160}$ $\left[\text{M}^{2}\text{L}^{-2}\text{T}^{-3}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ $\hbar^{5}\text{c}^{-8}\alpha^{-23/2}\text{m}_\text{P}^{-7}\tau^{-5}$
impedance $2.88068(19) \times 10^{-156}$ $\left[\text{M}\cdot \text{L}^{-4}\text{T}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ $\hbar^{5}\text{c}^{-6}\alpha^{-9}\text{m}_\text{P}^{-6}\tau^{-5}$
specific impedance $4.28521(19) \times 10^{-93}$ $\left[\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ $\hbar^{3}\text{c}^{-4}\alpha^{-6}\text{m}_\text{P}^{-4}\tau^{-3}$
admittance $3.47140(23) \times 10^{155}$ $\left[\text{M}^{-1}\text{L}^{4}\text{T}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ $\hbar^{-5}\text{c}^{6}\alpha^{9}\text{m}_\text{P}^{6}\tau^{5}$
compliance $1.323660(44) \times 10^{67}$ $\left[\text{M}^{-1}\text{T}^{2}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ $\hbar^{-2}\text{c}^{4}\alpha^{11/2}\text{m}_\text{P}^{3}\tau^{2}$
inertance $2.43063(13) \times 10^{-118}$ $\left[\text{M}\cdot \text{L}^{-4}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ $\hbar^{4}\text{c}^{-4}\alpha^{-13/2}\text{m}_\text{P}^{-5}\tau^{-4}$

Electromagnetic Ratios

Name Quantity Product
charge $6.241509074460763 \times 10^{18}$ $\left[\text{e}\right]/\left[\text{C}\right]$ $\text{e}^{-1}$
charge density $1.087866(36) \times 10^{-76}$ $\left[\text{L}^{-3}\text{Q}\right]/\left[\text{m}^{-3}\text{C}\right]$ $\hbar^{3}\text{c}^{-3}\text{e}^{-1}\alpha^{-9/2}\text{m}_\text{P}^{-3}\tau^{-3}$
linear charge density $1.618272(18) \times 10^{-13}$ $\left[\text{L}^{-1}\text{Q}\right]/\left[\text{m}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$
exposure $1.160427(13) \times 10^{10}$ $\left[\text{M}^{-1}\text{Q}\right]/\left[\text{kg}^{-1}\text{C}\right]$ $\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}$
mobility $317.440378046(97)$ $\left[\text{M}\cdot \text{L}^{4}\text{T}^{-3}\text{Q}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{e}\cdot \alpha^{-2}\tau$
current $7.397169(82) \times 10^{-20}$ $\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-2}\text{e}^{-1}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$
current density $4.97267(16) \times 10^{-83}$ $\left[\text{L}^{-2}\text{T}^{-1}\text{Q}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ $\hbar^{3}\text{c}^{-4}\text{e}^{-1}\alpha^{-11/2}\text{m}_\text{P}^{-3}\tau^{-3}$
resistance $0.00024341348057879472$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}\right]/\left[\Omega\right]$ $\hbar^{-1}\text{e}^{2}\tau$
conductance $4108.2359022276605$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}\right]/\left[\text{S}\right]$ $\hbar\cdot \text{e}^{-2}\tau^{-1}$
resistivity $9.38821(10) \times 10^{27}$ $\left[\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-2}\right]/\left[\Omega \cdot \text{m}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}^{2}\alpha^{3/2}\text{m}_\text{P}\cdot \tau^{2}$
conductivity $1.065166(12) \times 10^{-28}$ $\left[\text{M}^{-1}\text{L}^{-3}\text{T}\cdot \text{Q}^{2}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-2}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-2}$
capacitance $3.466406(38) \times 10^{41}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}\right]/\left[\text{F}\right]$ $\text{c}^{2}\text{e}^{-2}\alpha^{5/2}\text{m}_\text{P}$
inductance $2.053850(23) \times 10^{34}$ $\left[\text{M}\cdot \text{L}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau^{2}$
reluctance $4.868905(54) \times 10^{-35}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}\right]/\left[\text{H}^{-1}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-2}$
permeance $2.053850(23) \times 10^{34}$ $\left[\text{M}\cdot \text{L}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau^{2}$
permittivity $8.9875517923(14) \times 10^{9}$ $\left[\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$
permeability $532.513544914(82)$ $\left[\text{M}\cdot \text{L}\cdot \text{Q}^{-2}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha\cdot \tau$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $1.066700(47) \times 10^{86}$ $\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\alpha^{5}\text{m}_\text{P}^{4}\tau^{3}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $3.939093(43) \times 10^{-17}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ $\text{c}^{-1}\text{e}\cdot \alpha^{-3/2}\text{m}_\text{P}^{-1}$
electric potential $1.800571(20) \times 10^{-23}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{Q}^{-1}\right]/\left[\text{V}\right]$ $\text{c}^{-2}\text{e}\cdot \alpha^{-5/2}\text{m}_\text{P}^{-1}$
magnetic potential $7.397169(82) \times 10^{-20}$ $\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-2}\text{e}^{-1}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$
electric field $4.66844(10) \times 10^{-55}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\text{Q}^{-1}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-3}\text{e}\cdot \alpha^{-4}\text{m}_\text{P}^{-2}\tau^{-1}$
magnetic field $1.917907(42) \times 10^{-51}$ $\left[\text{L}^{-1}\text{T}^{-1}\text{Q}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ $\hbar^{2}\text{c}^{-3}\text{e}^{-1}\alpha^{-4}\text{m}_\text{P}^{-2}\tau^{-2}$
electric flux $6.9446154178(11) \times 10^{8}$ $\left[\text{M}\cdot \text{L}^{3}\text{T}^{-2}\text{Q}^{-1}\right]/\left[\text{V} \cdot \text{m}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \alpha^{-1}\tau$
magnetic flux $1.519267447878626 \times 10^{15}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{Wb}\right]$ $\hbar^{-1}\text{e}\cdot \tau$
electric displacement $4.195788(93) \times 10^{-45}$ $\left[\text{L}^{-2}\text{Q}\right]/\left[\text{m}^{-2}\text{C}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-1}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$
magnetic flux density $1.021311(23) \times 10^{-48}$ $\left[\text{M}\cdot \text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{T}\right]$ $\hbar\cdot \text{c}^{-2}\text{e}\cdot \alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-1}$
electric dipole moment $2.407286(27) \times 10^{50}$ $\left[\text{L}\cdot \text{Q}\right]/\left[\text{m}\cdot \text{C}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{-1}\alpha^{3/2}\text{m}_\text{P}\cdot \tau$
magnetic dipole moment $1.100377(12) \times 10^{44}$ $\left[\text{L}^{2}\text{T}^{-1}\text{Q}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ $\hbar^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot \tau$
electric polarizability $5.15651(17) \times 10^{104}$ $\left[\text{M}^{-1}\text{T}^{2}\text{Q}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ $\hbar^{-2}\text{c}^{4}\text{e}^{-2}\alpha^{11/2}\text{m}_\text{P}^{3}\tau^{2}$
magnetic polarizability $5.73739(19) \times 10^{94}$ $\left[\text{L}^{3}\right]/\left[\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\alpha^{9/2}\text{m}_\text{P}^{3}\tau^{3}$
magnetic moment $5.859658(65) \times 10^{46}$ $\left[\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}\cdot \alpha^{3/2}\text{m}_\text{P}\cdot \tau^{2}$
specific magnetization $9.17909(20) \times 10^{-39}$ $\left[\text{L}^{-3}\text{T}\cdot \text{Q}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-1}\alpha^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$
pole strength $2.85301183865(44) \times 10^{12}$ $\left[\text{L}\cdot \text{T}^{-1}\text{Q}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\alpha^{-1}$

Thermodynamic Ratios

Name Quantity Product
temperature $1.551612(17) \times 10^{-27}$ $\left[\text{T}^{-1}\right]/\left[\text{K}\right]$ $\text{k}_\text{B}\cdot \text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}$
entropy $7.24297051603992 \times 10^{22}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}$
specific entropy $1.346619(15) \times 10^{14}$ $\left[\text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ $\text{k}_\text{B}^{-1}\alpha^{1/2}\text{m}_\text{P}$
volume heat capacity $1.262416(42) \times 10^{-72}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar^{3}\text{c}^{-3}\alpha^{-9/2}\text{m}_\text{P}^{-3}\tau^{-3}$
thermal conductivity $2.225638(49) \times 10^{-47}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\alpha^{-4}\text{m}_\text{P}^{-2}\tau^{-2}$
thermal conductance $8.584058(95) \times 10^{-16}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$
thermal resistivity $4.493093(99) \times 10^{46}$ $\left[\text{M}^{-1}\text{L}^{-1}\text{T}^{2}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-2}\text{c}^{3}\alpha^{4}\text{m}_\text{P}^{2}\tau^{2}$
thermal resistance $1.164950(13) \times 10^{15}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau$
thermal expansion $6.444911(71) \times 10^{26}$ $\left[\text{T}\right]/\left[\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}$
lapse rate $4.022954(89) \times 10^{-59}$ $\left[\text{L}^{-1}\text{T}^{-1}\right]/\left[\text{m}^{-1}\text{K}\right]$ $\text{k}_\text{B}\cdot \hbar\cdot \text{c}^{-3}\alpha^{-4}\text{m}_\text{P}^{-2}\tau^{-1}$

Molar Ratios

Name Quantity Product
molar mass $1000.000000340000000(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molality $0.00099999999966(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molar amount $537863.2(59)$ $\left[\text{M}\right]/\left[\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$
molarity $9.37471(41) \times 10^{-90}$ $\left[\text{M}\cdot \text{L}^{-3}\right]/\left[\text{m}^{-3}\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot \alpha^{-7}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-3}2$
molar volume $1.066700(47) \times 10^{89}$ $\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{7}\mu_\text{eu}\cdot \text{m}_\text{P}^{4}\tau^{3}2^{-1}$
molar entropy $1.346619(15) \times 10^{17}$ $\left[\text{L}^{2}\text{T}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot \text{m}_\text{P}\cdot 2^{-1}$
molar energy $2.089430525207(61) \times 10^{-10}$ $\left[\text{L}^{2}\text{T}^{-2}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\mu_\text{eu}\cdot 2^{-1}$
molar conductivity $2.945924(65) \times 10^{29}$ $\left[\text{M}^{-2}\text{L}^{-1}\text{T}\cdot \text{Q}^{2}\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{2}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{4}\mu_\text{eu}\cdot \text{m}_\text{P}^{2}2^{-1}$
molar susceptibility $1.066700(47) \times 10^{89}$ $\left[\text{M}^{-1}\text{L}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{7}\mu_\text{eu}\cdot \text{m}_\text{P}^{4}\tau^{3}2^{-1}$
catalysis $6.37452(14) \times 10^{-33}$ $\left[\text{M}\cdot \text{T}^{-1}\right]/\left[\text{kat}\right]$ $\text{N}_\text{A}\cdot \hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-5}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}2$
specificity $1.264207(42) \times 10^{51}$ $\left[\text{M}^{-1}\text{L}^{3}\text{T}^{-1}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-3}\text{c}^{2}\text{R}_{\infty}^{-1}\alpha^{9/2}\mu_\text{eu}\cdot \text{m}_\text{P}^{3}\tau^{2}2^{-1}$
diffusion flux $3.050843(67) \times 10^{-20}$ $\left[\text{M}\cdot \text{L}^{-2}\text{T}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar^{2}\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}2$

Photometric Ratios

Name Quantity Product
luminous flux $1.950035(43) \times 10^{-45}$ $\left[\text{T}^{2}\right]/\left[\text{cd}\right]$ $\hbar\cdot \text{c}^{-4}\text{K}_\text{cd}^{-1}\alpha^{-5}\text{m}_\text{P}^{-2}\tau^{-1}$
luminous intensity $1.950035(43) \times 10^{-45}$ $\left[\text{T}^{2}\right]/\left[\text{cd}\right]$ $\hbar\cdot \text{c}^{-4}\text{K}_\text{cd}^{-1}\alpha^{-5}\text{m}_\text{P}^{-2}\tau^{-1}$
luminance $1.310890(58) \times 10^{-108}$ $\left[\text{L}^{-2}\text{T}^{2}\right]/\left[\text{lx}\right]$ $\hbar^{3}\text{c}^{-6}\text{K}_\text{cd}^{-1}\alpha^{-8}\text{m}_\text{P}^{-4}\tau^{-3}$
illuminance $1.310890(58) \times 10^{-108}$ $\left[\text{L}^{-2}\text{T}^{2}\right]/\left[\text{lx}\right]$ $\hbar^{3}\text{c}^{-6}\text{K}_\text{cd}^{-1}\alpha^{-8}\text{m}_\text{P}^{-4}\tau^{-3}$
luminous energy $1.645381(18) \times 10^{-7}$ $\left[\text{T}^{3}\right]/\left[\text{s}\cdot \text{lm}\right]$ $\text{c}^{-2}\text{K}_\text{cd}^{-1}\alpha^{-5/2}\text{m}_\text{P}^{-1}$
luminous exposure $1.106090(37) \times 10^{-70}$ $\left[\text{L}^{-2}\text{T}^{3}\right]/\left[\text{lx} \cdot \text{s}\right]$ $\hbar^{2}\text{c}^{-4}\text{K}_\text{cd}^{-1}\alpha^{-11/2}\text{m}_\text{P}^{-3}\tau^{-2}$
luminous efficacy $0.0014640866354352104$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{5}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ $\text{K}_\text{cd}^{-1}$

Kinematic

Unified SI2019 Schrodinger
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{s}$ $\text{T}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{s}$ $\text{T}$
length $\text{L}$ $\text{m}$ $\text{L}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}$ $\text{L}$
area $\text{L}^{2}$ $\text{m}^{2}$ $\text{L}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}^{2}$ $\text{L}^{2}$
volume $\text{L}^{3}$ $\text{m}^{3}$ $\text{L}^{3}$
wavenumber $\text{L}^{-1}$ $\text{m}^{-1}$ $\text{L}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}^{-1}$ $\text{L}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{m}^{-2}$ $\text{L}^{-2}$
number density $\text{L}^{-3}$ $\text{m}^{-3}$ $\text{L}^{-3}$
frequency $\text{T}^{-1}$ $\text{Hz}$ $\text{T}^{-1}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{Hz}$ $\text{T}^{-1}$
frequency drift $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$ $\text{T}^{-2}$
stagnance $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$ $\text{L}^{-1}\text{T}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$ $\text{L}\cdot \text{T}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$ $\text{L}\cdot \text{T}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$ $\text{L}\cdot \text{T}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$ $\text{L}\cdot \text{T}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$ $\text{L}\cdot \text{T}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$ $\text{L}\cdot \text{T}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$ $\text{L}^{3}\text{T}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}^{2}$ $\text{L}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{Hz}$ $\text{T}^{-1}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{L}^{-2}\text{T}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{L}^{-2}\text{T}$

Mechanical

Unified SI2019 Schrodinger
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{kg}$ $\text{M}$
mass $\text{M}$ $\text{kg}$ $\text{M}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{M}\cdot \text{T}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$ $\text{M}\cdot \text{L}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$ $\text{M}\cdot \text{L}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$ $\text{M}\cdot \text{L}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{M}^{-1}\text{L}^{3}$
force $\text{F}$ $\text{N}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}\cdot \text{s}^{-2}$ $\text{L}\cdot \text{T}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{Pa}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-2}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{Pa}^{-1}$ $\text{M}^{-1}\text{L}\cdot \text{T}^{2}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{Pa} \cdot \text{s}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-1}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$ $\text{L}^{2}\text{T}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$ $\text{M}\cdot \text{L}^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{N} \cdot \text{s}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{J} \cdot \text{s}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$
energy $\text{F}\cdot \text{L}$ $\text{J}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{J} \cdot \text{kg}^{-1}$ $\text{L}^{2}\text{T}^{-2}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{J} \cdot \text{s}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{N} \cdot \text{m}^{-1}$ $\text{M}\cdot \text{T}^{-2}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{W}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-3}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-2}$ $\text{M}\cdot \text{T}^{-3}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{W} \cdot \text{m}^{-2}$ $\text{M}\cdot \text{T}^{-3}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{W}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{M}\cdot \text{T}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ $\text{M}^{2}\text{L}^{-2}\text{T}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ $\text{M}\cdot \text{L}^{-4}\text{T}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$ $\text{M}^{-1}\text{L}^{4}\text{T}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$ $\text{M}^{-1}\text{T}^{2}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$ $\text{M}\cdot \text{L}^{-4}$

Electromagnetic

Unified SI2019 Schrodinger
charge $\text{Q}$ $\text{C}$ $\text{e}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$ $\text{L}^{-3}\text{Q}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$ $\text{L}^{-1}\text{Q}$
exposure $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$ $\text{M}^{-1}\text{Q}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ $\text{M}\cdot \text{L}^{4}\text{T}^{-3}\text{Q}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$ $\text{T}^{-1}\text{Q}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$ $\text{L}^{-2}\text{T}^{-1}\text{Q}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\Omega$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{S}$ $\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\Omega \cdot \text{m}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-2}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$ $\text{M}^{-1}\text{L}^{-3}\text{T}\cdot \text{Q}^{2}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{F}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{H}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{H}^{-1}$ $\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{F} \cdot \text{m}^{-1}$ $\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H} \cdot \text{m}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{Q}^{-2}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{M}^{-1}\text{L}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}\text{Q}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{V}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{Q}^{-1}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{s}^{-1}\text{C}$ $\text{T}^{-1}\text{Q}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}\text{Q}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$ $\text{L}^{-1}\text{T}^{-1}\text{Q}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-2}\text{Q}^{-1}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-1}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}^{-2}\text{C}$ $\text{L}^{-2}\text{Q}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}$ $\text{M}\cdot \text{T}^{-1}\text{Q}^{-1}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$ $\text{L}\cdot \text{Q}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{J} \cdot \text{T}^{-1}$ $\text{L}^{2}\text{T}^{-1}\text{Q}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ $\text{M}^{-1}\text{T}^{2}\text{Q}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}$ $\text{L}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}^{-3}\text{s}\cdot \text{C}$ $\text{L}^{-3}\text{T}\cdot \text{Q}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}\cdot \text{s}^{-1}\text{C}$ $\text{L}\cdot \text{T}^{-1}\text{Q}$

Thermodynamic

Unified SI2019 Schrodinger
temperature $\Theta$ $\text{K}$ $\text{T}^{-1}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ $\text{L}^{2}\text{T}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{K}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ $\text{M}^{-1}\text{L}^{-1}\text{T}^{2}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{W}^{-1}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{2}$
thermal expansion $\Theta^{-1}$ $\text{K}^{-1}$ $\text{T}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}^{-1}\text{K}$ $\text{L}^{-1}\text{T}^{-1}$

Molar

Unified SI2019 Schrodinger
molar mass $\text{M}\cdot \text{N}^{-1}$ $\text{kg}\cdot \text{mol}^{-1}$ $\mathbb{1}$
molality $\text{M}^{-1}\text{N}$ $\text{kg}^{-1}\text{mol}$ $\mathbb{1}$
molar amount $\text{N}$ $\text{mol}$ $\text{M}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}^{-3}\text{mol}$ $\text{M}\cdot \text{L}^{-3}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{M}^{-1}\text{L}^{3}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ $\text{L}^{2}\text{T}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{J} \cdot \text{mol}^{-1}$ $\text{L}^{2}\text{T}^{-2}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ $\text{M}^{-2}\text{L}^{-1}\text{T}\cdot \text{Q}^{2}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{M}^{-1}\text{L}^{3}$
catalysis $\text{T}^{-1}\text{N}$ $\text{kat}$ $\text{M}\cdot \text{T}^{-1}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ $\text{M}^{-1}\text{L}^{3}\text{T}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$ $\text{M}\cdot \text{L}^{-2}\text{T}$

Photometric

Unified SI2019 Schrodinger
luminous flux $\text{J}$ $\text{cd}$ $\text{T}^{2}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{cd}$ $\text{T}^{2}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{lx}$ $\text{L}^{-2}\text{T}^{2}$
illuminance $\text{L}^{-2}\text{J}$ $\text{lx}$ $\text{L}^{-2}\text{T}^{2}$
luminous energy $\text{T}\cdot \text{J}$ $\text{s}\cdot \text{lm}$ $\text{T}^{3}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{lx} \cdot \text{s}$ $\text{L}^{-2}\text{T}^{3}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{lm} \cdot \text{W}^{-1}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{5}$