Schrodinger -> SI2019

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $1.185157(13) \times 10^{-38}$ $\left[\text{s}\right]/\left[\text{T}\right]$ $\hbar\cdot \text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$
angular time $1.185157(13) \times 10^{-38}$ $\left[\text{s}\right]/\left[\text{T}\right]$ $\hbar\cdot \text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$
length $2.592758(29) \times 10^{-32}$ $\left[\text{m}\right]/\left[\text{L}\right]$ $\hbar\cdot \text{c}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$
angular length $2.592758(29) \times 10^{-32}$ $\left[\text{m}\right]/\left[\text{L}\right]$ $\hbar\cdot \text{c}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$
area $6.72239(15) \times 10^{-64}$ $\left[\text{m}^{2}\right]/\left[\text{L}^{2}\right]$ $\hbar^{2}\text{c}^{-2}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$
angular area $6.72239(15) \times 10^{-64}$ $\left[\text{m}^{2}\right]/\left[\text{L}^{2}\right]$ $\hbar^{2}\text{c}^{-2}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$
volume $1.742954(58) \times 10^{-95}$ $\left[\text{m}^{3}\right]/\left[\text{L}^{3}\right]$ $\hbar^{3}\text{c}^{-3}\alpha^{-9/2}\text{m}_\text{P}^{-3}\tau^{-3}$
wavenumber $3.856897(43) \times 10^{31}$ $\left[\text{m}^{-1}\right]/\left[\text{L}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \alpha^{3/2}\text{m}_\text{P}\cdot \tau$
angular wavenumber $3.856897(43) \times 10^{31}$ $\left[\text{m}^{-1}\right]/\left[\text{L}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \alpha^{3/2}\text{m}_\text{P}\cdot \tau$
fuel efficiency $1.487565(33) \times 10^{63}$ $\left[\text{m}^{-2}\right]/\left[\text{L}^{-2}\right]$ $\hbar^{-2}\text{c}^{2}\alpha^{3}\text{m}_\text{P}^{2}\tau^{2}$
number density $5.73739(19) \times 10^{94}$ $\left[\text{m}^{-3}\right]/\left[\text{L}^{-3}\right]$ $\hbar^{-3}\text{c}^{3}\alpha^{9/2}\text{m}_\text{P}^{3}\tau^{3}$
frequency $8.437700(93) \times 10^{37}$ $\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ $\hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau$
angular frequency $8.437700(93) \times 10^{37}$ $\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ $\hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau$
frequency drift $7.11948(16) \times 10^{75}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ $\hbar^{-2}\text{c}^{4}\alpha^{5}\text{m}_\text{P}^{2}\tau^{2}$
stagnance $4.57102890440(70) \times 10^{-7}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\text{L}^{-1}\text{T}\right]$ $\text{c}^{-1}\alpha^{-1}$
speed $2.18769126364(34) \times 10^{6}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\text{L}\cdot \text{T}^{-1}\right]$ $\text{c}\cdot \alpha$
acceleration $1.845908(20) \times 10^{44}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{L}\cdot \text{T}^{-2}\right]$ $\hbar^{-1}\text{c}^{3}\alpha^{7/2}\text{m}_\text{P}\cdot \tau$
jerk $1.557522(34) \times 10^{82}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\text{L}\cdot \text{T}^{-3}\right]$ $\hbar^{-2}\text{c}^{5}\alpha^{6}\text{m}_\text{P}^{2}\tau^{2}$
snap $1.314190(43) \times 10^{120}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\text{L}\cdot \text{T}^{-4}\right]$ $\hbar^{-3}\text{c}^{7}\alpha^{17/2}\text{m}_\text{P}^{3}\tau^{3}$
crackle $1.108874(49) \times 10^{158}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\text{L}\cdot \text{T}^{-5}\right]$ $\hbar^{-4}\text{c}^{9}\alpha^{11}\text{m}_\text{P}^{4}\tau^{4}$
pop $9.35635(52) \times 10^{195}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\text{L}\cdot \text{T}^{-6}\right]$ $\hbar^{-5}\text{c}^{11}\alpha^{27/2}\text{m}_\text{P}^{5}\tau^{5}$
volume flow $1.470652(32) \times 10^{-57}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{L}^{3}\text{T}^{-1}\right]$ $\hbar^{2}\text{c}^{-1}\alpha^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$
etendue $6.72239(15) \times 10^{-64}$ $\left[\text{m}^{2}\right]/\left[\text{L}^{2}\right]$ $\hbar^{2}\text{c}^{-2}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$
photon intensity $8.437700(93) \times 10^{37}$ $\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ $\hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau$
photon irradiance $1.762999(19) \times 10^{25}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{L}^{-2}\text{T}\right]$ $\hbar^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot \tau$
photon radiance $1.762999(19) \times 10^{25}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{L}^{-2}\text{T}\right]$ $\hbar^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot \tau$

Mechanical Ratios

Name Quantity Product
inertia $1.859209(21) \times 10^{-9}$ $\left[\text{kg}\right]/\left[\text{M}\right]$ $\alpha^{1/2}\text{m}_\text{P}$
mass $1.859209(21) \times 10^{-9}$ $\left[\text{kg}\right]/\left[\text{M}\right]$ $\alpha^{1/2}\text{m}_\text{P}$
mass flow $1.568745(35) \times 10^{29}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{M}\cdot \text{T}^{-1}\right]$ $\hbar^{-1}\text{c}^{2}\alpha^{3}\text{m}_\text{P}^{2}\tau$
linear density $7.17078(16) \times 10^{22}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \alpha^{2}\text{m}_\text{P}^{2}\tau$
area density $2.765695(91) \times 10^{54}$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\text{M}\cdot \text{L}^{-2}\right]$ $\hbar^{-2}\text{c}^{2}\alpha^{7/2}\text{m}_\text{P}^{3}\tau^{2}$
density $1.066700(47) \times 10^{86}$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\text{M}\cdot \text{L}^{-3}\right]$ $\hbar^{-3}\text{c}^{3}\alpha^{5}\text{m}_\text{P}^{4}\tau^{3}$
specific weight $1.96903(11) \times 10^{130}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\text{M}\cdot \text{L}^{-2}\text{T}^{-2}\right]$ $\hbar^{-4}\text{c}^{6}\alpha^{17/2}\text{m}_\text{P}^{5}\tau^{4}$
specific volume $9.37471(41) \times 10^{-87}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ $\hbar^{3}\text{c}^{-3}\alpha^{-5}\text{m}_\text{P}^{-4}\tau^{-3}$
force $3.431929(76) \times 10^{35}$ $\left[\text{N}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]$ $\hbar^{-1}\text{c}^{3}\alpha^{4}\text{m}_\text{P}^{2}\tau$
specific force $1.845908(20) \times 10^{44}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{L}\cdot \text{T}^{-2}\right]$ $\hbar^{-1}\text{c}^{3}\alpha^{7/2}\text{m}_\text{P}\cdot \tau$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $5.10522(23) \times 10^{98}$ $\left[\text{Pa}\right]/\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-2}\right]$ $\hbar^{-3}\text{c}^{5}\alpha^{7}\text{m}_\text{P}^{4}\tau^{3}$
compressibility $1.958780(86) \times 10^{-99}$ $\left[\text{Pa}^{-1}\right]/\left[\text{M}^{-1}\text{L}\cdot \text{T}^{2}\right]$ $\hbar^{3}\text{c}^{-5}\alpha^{-7}\text{m}_\text{P}^{-4}\tau^{-3}$
viscosity $6.05049(20) \times 10^{60}$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]$ $\hbar^{-2}\text{c}^{3}\alpha^{9/2}\text{m}_\text{P}^{3}\tau^{2}$
diffusivity $5.672154(63) \times 10^{-26}$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ $\hbar\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$
rotational inertia $1.249833(14) \times 10^{-72}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\text{M}\cdot \text{L}^{2}\right]$ $\hbar^{2}\text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-2}$
impulse $0.004067375(45)$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\right]$ $\text{c}\cdot \alpha^{3/2}\text{m}_\text{P}$
momentum $0.004067375(45)$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\right]$ $\text{c}\cdot \alpha^{3/2}\text{m}_\text{P}$
angular momentum $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ $\hbar\cdot \tau^{-1}$
yank $2.895759(96) \times 10^{73}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-3}\right]$ $\hbar^{-2}\text{c}^{5}\alpha^{13/2}\text{m}_\text{P}^{3}\tau^{2}$
energy $8898.160(98)$ $\left[\text{J}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]$ $\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}$
specific energy $4.7859930650(15) \times 10^{12}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-2}\right]$ $\text{c}^{2}\alpha^{2}$
action $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ $\hbar\cdot \tau^{-1}$
fluence $1.323660(44) \times 10^{67}$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{T}^{-2}\right]$ $\hbar^{-2}\text{c}^{4}\alpha^{11/2}\text{m}_\text{P}^{3}\tau^{2}$
power $7.50800(17) \times 10^{41}$ $\left[\text{W}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-3}\right]$ $\hbar^{-1}\text{c}^{4}\alpha^{5}\text{m}_\text{P}^{2}\tau$
power density $4.30763(24) \times 10^{136}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-3}\right]$ $\hbar^{-4}\text{c}^{7}\alpha^{19/2}\text{m}_\text{P}^{5}\tau^{4}$
irradiance $1.116864(49) \times 10^{105}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{M}\cdot \text{T}^{-3}\right]$ $\hbar^{-3}\text{c}^{6}\alpha^{8}\text{m}_\text{P}^{4}\tau^{3}$
radiance $1.116864(49) \times 10^{105}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{M}\cdot \text{T}^{-3}\right]$ $\hbar^{-3}\text{c}^{6}\alpha^{8}\text{m}_\text{P}^{4}\tau^{3}$
radiant intensity $7.50800(17) \times 10^{41}$ $\left[\text{W}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-3}\right]$ $\hbar^{-1}\text{c}^{4}\alpha^{5}\text{m}_\text{P}^{2}\tau$
spectral flux $2.895759(96) \times 10^{73}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-3}\right]$ $\hbar^{-2}\text{c}^{5}\alpha^{13/2}\text{m}_\text{P}^{3}\tau^{2}$
spectral exposure $1.568745(35) \times 10^{29}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{M}\cdot \text{T}^{-1}\right]$ $\hbar^{-1}\text{c}^{2}\alpha^{3}\text{m}_\text{P}^{2}\tau$
sound exposure $3.08891(24) \times 10^{159}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{M}^{2}\text{L}^{-2}\text{T}^{-3}\right]$ $\hbar^{-5}\text{c}^{8}\alpha^{23/2}\text{m}_\text{P}^{7}\tau^{5}$
impedance $3.47140(23) \times 10^{155}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}^{-4}\text{T}^{-1}\right]$ $\hbar^{-5}\text{c}^{6}\alpha^{9}\text{m}_\text{P}^{6}\tau^{5}$
specific impedance $2.33361(10) \times 10^{92}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\right]$ $\hbar^{-3}\text{c}^{4}\alpha^{6}\text{m}_\text{P}^{4}\tau^{3}$
admittance $2.88068(19) \times 10^{-156}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{M}^{-1}\text{L}^{4}\text{T}\right]$ $\hbar^{5}\text{c}^{-6}\alpha^{-9}\text{m}_\text{P}^{-6}\tau^{-5}$
compliance $7.55481(25) \times 10^{-68}$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\text{M}^{-1}\text{T}^{2}\right]$ $\hbar^{2}\text{c}^{-4}\alpha^{-11/2}\text{m}_\text{P}^{-3}\tau^{-2}$
inertance $4.11415(23) \times 10^{117}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\text{M}\cdot \text{L}^{-4}\right]$ $\hbar^{-4}\text{c}^{4}\alpha^{13/2}\text{m}_\text{P}^{5}\tau^{4}$

Electromagnetic Ratios

Name Quantity Product
charge $1.602176634 \times 10^{-19}$ $\left[\text{C}\right]/\left[\text{e}\right]$ $\text{e}$
charge density $9.19231(30) \times 10^{75}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{L}^{-3}\text{Q}\right]$ $\hbar^{-3}\text{c}^{3}\text{e}\cdot \alpha^{9/2}\text{m}_\text{P}^{3}\tau^{3}$
linear charge density $6.179430(68) \times 10^{12}$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{L}^{-1}\text{Q}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}\cdot \alpha^{3/2}\text{m}_\text{P}\cdot \tau$
exposure $8.617519(95) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{M}^{-1}\text{Q}\right]$ $\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}$
mobility $0.00315019786127(97)$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\text{M}\cdot \text{L}^{4}\text{T}^{-3}\text{Q}^{-1}\right]$ $\hbar\cdot \text{c}^{2}\text{e}^{-1}\alpha^{2}\tau^{-1}$
current $1.351869(15) \times 10^{19}$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ $\hbar^{-1}\text{c}^{2}\text{e}\cdot \alpha^{5/2}\text{m}_\text{P}\cdot \tau$
current density $2.010993(67) \times 10^{82}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{L}^{-2}\text{T}^{-1}\text{Q}\right]$ $\hbar^{-3}\text{c}^{4}\text{e}\cdot \alpha^{11/2}\text{m}_\text{P}^{3}\tau^{3}$
resistance $4108.2359022276605$ $\left[\Omega\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}\right]$ $\hbar\cdot \text{e}^{-2}\tau^{-1}$
conductance $0.00024341348057879472$ $\left[\text{S}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}\right]$ $\hbar^{-1}\text{e}^{2}\tau$
resistivity $1.065166(12) \times 10^{-28}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-2}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-2}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-2}$
conductivity $9.38821(10) \times 10^{27}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-3}\text{T}\cdot \text{Q}^{2}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}^{2}\alpha^{3/2}\text{m}_\text{P}\cdot \tau^{2}$
capacitance $2.884832(32) \times 10^{-42}$ $\left[\text{F}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}\right]$ $\text{c}^{-2}\text{e}^{2}\alpha^{-5/2}\text{m}_\text{P}^{-1}$
inductance $4.868905(54) \times 10^{-35}$ $\left[\text{H}\right]/\left[\text{M}\cdot \text{L}^{2}\text{Q}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-2}$
reluctance $2.053850(23) \times 10^{34}$ $\left[\text{H}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau^{2}$
permeance $4.868905(54) \times 10^{-35}$ $\left[\text{H}\right]/\left[\text{M}\cdot \text{L}^{2}\text{Q}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-2}$
permittivity $1.11265005545(17) \times 10^{-10}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}\tau$
permeability $0.00187788650552(29)$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{Q}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\alpha^{-1}\tau^{-1}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $9.37471(41) \times 10^{-87}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ $\hbar^{3}\text{c}^{-3}\alpha^{-5}\text{m}_\text{P}^{-4}\tau^{-3}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $2.538656(28) \times 10^{16}$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\text{Q}^{-1}\right]$ $\text{c}\cdot \text{e}^{-1}\alpha^{3/2}\text{m}_\text{P}$
electric potential $5.553795(61) \times 10^{22}$ $\left[\text{V}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{Q}^{-1}\right]$ $\text{c}^{2}\text{e}^{-1}\alpha^{5/2}\text{m}_\text{P}$
magnetic potential $1.351869(15) \times 10^{19}$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ $\hbar^{-1}\text{c}^{2}\text{e}\cdot \alpha^{5/2}\text{m}_\text{P}\cdot \tau$
electric field $2.142041(47) \times 10^{54}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\text{Q}^{-1}\right]$ $\hbar^{-1}\text{c}^{3}\text{e}^{-1}\alpha^{4}\text{m}_\text{P}^{2}\tau$
magnetic field $5.21402(11) \times 10^{50}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{L}^{-1}\text{T}^{-1}\text{Q}\right]$ $\hbar^{-2}\text{c}^{3}\text{e}\cdot \alpha^{4}\text{m}_\text{P}^{2}\tau^{2}$
electric flux $1.43996454784(22) \times 10^{-9}$ $\left[\text{V} \cdot \text{m}\right]/\left[\text{M}\cdot \text{L}^{3}\text{T}^{-2}\text{Q}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-1}\alpha\cdot \tau^{-1}$
magnetic flux $6.582119569509067 \times 10^{-16}$ $\left[\text{Wb}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-1}\right]$ $\hbar\cdot \text{e}^{-1}\tau^{-1}$
electric displacement $2.383343(53) \times 10^{44}$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{L}^{-2}\text{Q}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}\cdot \alpha^{3}\text{m}_\text{P}^{2}\tau^{2}$
magnetic flux density $9.79133(22) \times 10^{47}$ $\left[\text{T}\right]/\left[\text{M}\cdot \text{T}^{-1}\text{Q}^{-1}\right]$ $\hbar^{-1}\text{c}^{2}\text{e}^{-1}\alpha^{3}\text{m}_\text{P}^{2}\tau$
electric dipole moment $4.154056(46) \times 10^{-51}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{L}\cdot \text{Q}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}\cdot \alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$
magnetic dipole moment $9.08779(10) \times 10^{-45}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\text{Q}\right]$ $\hbar\cdot \text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$
electric polarizability $1.939298(64) \times 10^{-105}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{M}^{-1}\text{T}^{2}\text{Q}^{2}\right]$ $\hbar^{2}\text{c}^{-4}\text{e}^{2}\alpha^{-11/2}\text{m}_\text{P}^{-3}\tau^{-2}$
magnetic polarizability $1.742954(58) \times 10^{-95}$ $\left[\text{m}^{3}\right]/\left[\text{L}^{3}\right]$ $\hbar^{3}\text{c}^{-3}\alpha^{-9/2}\text{m}_\text{P}^{-3}\tau^{-3}$
magnetic moment $1.706584(19) \times 10^{-47}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-2}$
specific magnetization $1.089433(24) \times 10^{38}$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{L}^{-3}\text{T}\cdot \text{Q}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}\cdot \alpha^{2}\text{m}_\text{P}^{2}\tau^{2}$
pole strength $3.50506782501(54) \times 10^{-13}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\text{L}\cdot \text{T}^{-1}\text{Q}\right]$ $\text{c}\cdot \text{e}\cdot \alpha$

Thermodynamic Ratios

Name Quantity Product
temperature $6.444911(71) \times 10^{26}$ $\left[\text{K}\right]/\left[\text{T}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}$
entropy $1.380649 \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ $\text{k}_\text{B}$
specific entropy $7.426003(82) \times 10^{-15}$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ $\text{k}_\text{B}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}$
volume heat capacity $7.92132(26) \times 10^{71}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-3}\text{c}^{3}\alpha^{9/2}\text{m}_\text{P}^{3}\tau^{3}$
thermal conductivity $4.493093(99) \times 10^{46}$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]$ $\text{k}_\text{B}\cdot \hbar^{-2}\text{c}^{3}\alpha^{4}\text{m}_\text{P}^{2}\tau^{2}$
thermal conductance $1.164950(13) \times 10^{15}$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot \tau$
thermal resistivity $2.225638(49) \times 10^{-47}$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-1}\text{T}^{2}\right]$ $\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\alpha^{-4}\text{m}_\text{P}^{-2}\tau^{-2}$
thermal resistance $8.584058(95) \times 10^{-16}$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$
thermal expansion $1.551612(17) \times 10^{-27}$ $\left[\text{K}^{-1}\right]/\left[\text{T}\right]$ $\text{k}_\text{B}\cdot \text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}$
lapse rate $2.485736(55) \times 10^{58}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\text{L}^{-1}\text{T}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar^{-1}\text{c}^{3}\alpha^{4}\text{m}_\text{P}^{2}\tau$

Molar Ratios

Name Quantity Product
molar mass $0.00099999999966(31)$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molality $1000.000000340000000(31)$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molar amount $1.859209(21) \times 10^{-6}$ $\left[\text{mol}\right]/\left[\text{M}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot \text{m}_\text{P}\cdot 2^{-1}$
molarity $1.066700(47) \times 10^{89}$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\text{M}\cdot \text{L}^{-3}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{7}\mu_\text{eu}\cdot \text{m}_\text{P}^{4}\tau^{3}2^{-1}$
molar volume $9.37471(41) \times 10^{-90}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ $\text{N}_\text{A}\cdot \hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot \alpha^{-7}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-3}2$
molar entropy $7.426003(82) \times 10^{-18}$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$
molar energy $4.78599306335(14) \times 10^{9}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-2}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \mu_\text{eu}^{-1}2$
molar conductivity $3.394520(75) \times 10^{-30}$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{M}^{-2}\text{L}^{-1}\text{T}\cdot \text{Q}^{2}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-2}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-4}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}2$
molar susceptibility $9.37471(41) \times 10^{-90}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ $\text{N}_\text{A}\cdot \hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot \alpha^{-7}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-3}2$
catalysis $1.568745(35) \times 10^{32}$ $\left[\text{kat}\right]/\left[\text{M}\cdot \text{T}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{5}\mu_\text{eu}\cdot \text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
specificity $7.91010(26) \times 10^{-52}$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\text{T}^{-1}\right]$ $\text{N}_\text{A}\cdot \hbar^{3}\text{c}^{-2}\text{R}_{\infty}\cdot \alpha^{-9/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-3}\tau^{-2}2$
diffusion flux $3.277783(72) \times 10^{19}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\text{M}\cdot \text{L}^{-2}\text{T}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot \text{m}_\text{P}^{2}\tau\cdot 2^{-1}$

Photometric Ratios

Name Quantity Product
luminous flux $5.12811(11) \times 10^{44}$ $\left[\text{cd}\right]/\left[\text{T}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{K}_\text{cd}\cdot \alpha^{5}\text{m}_\text{P}^{2}\tau$
luminous intensity $5.12811(11) \times 10^{44}$ $\left[\text{cd}\right]/\left[\text{T}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{K}_\text{cd}\cdot \alpha^{5}\text{m}_\text{P}^{2}\tau$
luminance $7.62840(34) \times 10^{107}$ $\left[\text{lx}\right]/\left[\text{L}^{-2}\text{T}^{2}\right]$ $\hbar^{-3}\text{c}^{6}\text{K}_\text{cd}\cdot \alpha^{8}\text{m}_\text{P}^{4}\tau^{3}$
illuminance $7.62840(34) \times 10^{107}$ $\left[\text{lx}\right]/\left[\text{L}^{-2}\text{T}^{2}\right]$ $\hbar^{-3}\text{c}^{6}\text{K}_\text{cd}\cdot \alpha^{8}\text{m}_\text{P}^{4}\tau^{3}$
luminous energy $6.077619(67) \times 10^{6}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\text{T}^{3}\right]$ $\text{c}^{2}\text{K}_\text{cd}\cdot \alpha^{5/2}\text{m}_\text{P}$
luminous exposure $9.04086(30) \times 10^{69}$ $\left[\text{lx} \cdot \text{s}\right]/\left[\text{L}^{-2}\text{T}^{3}\right]$ $\hbar^{-2}\text{c}^{4}\text{K}_\text{cd}\cdot \alpha^{11/2}\text{m}_\text{P}^{3}\tau^{2}$
luminous efficacy $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{5}\right]$ $\text{K}_\text{cd}$

Kinematic

Unified Schrodinger SI2019
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{T}$ $\text{s}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{T}$ $\text{s}$
length $\text{L}$ $\text{L}$ $\text{m}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{L}$ $\text{m}$
area $\text{L}^{2}$ $\text{L}^{2}$ $\text{m}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{L}^{2}$ $\text{m}^{2}$
volume $\text{L}^{3}$ $\text{L}^{3}$ $\text{m}^{3}$
wavenumber $\text{L}^{-1}$ $\text{L}^{-1}$ $\text{m}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{L}^{-1}$ $\text{m}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{L}^{-2}$ $\text{m}^{-2}$
number density $\text{L}^{-3}$ $\text{L}^{-3}$ $\text{m}^{-3}$
frequency $\text{T}^{-1}$ $\text{T}^{-1}$ $\text{Hz}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{T}^{-1}$ $\text{Hz}$
frequency drift $\text{T}^{-2}$ $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$
stagnance $\text{L}^{-1}\text{T}$ $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{L}^{2}$ $\text{m}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{T}^{-1}$ $\text{Hz}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$

Mechanical

Unified Schrodinger SI2019
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{M}$ $\text{kg}$
mass $\text{M}$ $\text{M}$ $\text{kg}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-2}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$
force $\text{F}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\text{N}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-2}$ $\text{Pa}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{M}^{-1}\text{L}\cdot \text{T}^{2}$ $\text{Pa}^{-1}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{Pa} \cdot \text{s}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{s}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$
energy $\text{F}\cdot \text{L}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}$ $\text{J}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{L}^{2}\text{T}^{-2}$ $\text{J} \cdot \text{kg}^{-1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{s}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{M}\cdot \text{T}^{-2}$ $\text{N} \cdot \text{m}^{-1}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$ $\text{W}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-3}$ $\text{W} \cdot \text{m}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{M}\cdot \text{T}^{-3}$ $\text{W} \cdot \text{m}^{-2}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{M}\cdot \text{T}^{-3}$ $\text{W} \cdot \text{m}^{-2}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$ $\text{W}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{M}^{2}\text{L}^{-2}\text{T}^{-3}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{M}\cdot \text{L}^{-4}\text{T}^{-1}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{M}^{-1}\text{L}^{4}\text{T}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$

Electromagnetic

Unified Schrodinger SI2019
charge $\text{Q}$ $\text{e}$ $\text{C}$
charge density $\text{L}^{-3}\text{Q}$ $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$
exposure $\text{M}^{-1}\text{Q}$ $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{M}\cdot \text{L}^{4}\text{T}^{-3}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}$ $\Omega$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}$ $\text{S}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-2}$ $\Omega \cdot \text{m}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{M}^{-1}\text{L}^{-3}\text{T}\cdot \text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}$ $\text{F}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$ $\text{H}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}$ $\text{H}^{-1}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$ $\text{H}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}$ $\text{F} \cdot \text{m}^{-1}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{M}\cdot \text{L}\cdot \text{Q}^{-2}$ $\text{H} \cdot \text{m}^{-1}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}\text{Q}^{-1}$ $\text{Wb} \cdot \text{m}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{Q}^{-1}$ $\text{V}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{L}^{-1}\text{T}^{-1}\text{Q}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-1}$ $\text{Wb}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{L}^{-2}\text{Q}$ $\text{m}^{-2}\text{C}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{T}^{-1}\text{Q}^{-1}$ $\text{T}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{L}^{2}\text{T}^{-1}\text{Q}$ $\text{J} \cdot \text{T}^{-1}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{M}^{-1}\text{T}^{2}\text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{L}^{3}$ $\text{m}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{Wb} \cdot \text{m}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{L}^{-3}\text{T}\cdot \text{Q}$ $\text{m}^{-3}\text{s}\cdot \text{C}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{L}\cdot \text{T}^{-1}\text{Q}$ $\text{m}\cdot \text{s}^{-1}\text{C}$

Thermodynamic

Unified Schrodinger SI2019
temperature $\Theta$ $\text{T}^{-1}$ $\text{K}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{K}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}$ $\text{W} \cdot \text{K}^{-1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{M}^{-1}\text{L}^{-1}\text{T}^{2}$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{2}$ $\text{K} \cdot \text{W}^{-1}$
thermal expansion $\Theta^{-1}$ $\text{T}$ $\text{K}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{L}^{-1}\text{T}^{-1}$ $\text{m}^{-1}\text{K}$

Molar

Unified Schrodinger SI2019
molar mass $\text{M}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{mol}^{-1}$
molality $\text{M}^{-1}\text{N}$ $\mathbb{1}$ $\text{kg}^{-1}\text{mol}$
molar amount $\text{N}$ $\text{M}$ $\text{mol}$
molarity $\text{L}^{-3}\text{N}$ $\text{M}\cdot \text{L}^{-3}$ $\text{m}^{-3}\text{mol}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{M}^{-1}\text{L}^{3}$ $\text{m}^{3}\text{mol}^{-1}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{L}^{2}\text{T}^{-2}$ $\text{J} \cdot \text{mol}^{-1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{M}^{-2}\text{L}^{-1}\text{T}\cdot \text{Q}^{2}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{M}^{-1}\text{L}^{3}$ $\text{m}^{3}\text{mol}^{-1}$
catalysis $\text{T}^{-1}\text{N}$ $\text{M}\cdot \text{T}^{-1}$ $\text{kat}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{M}^{-1}\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{M}\cdot \text{L}^{-2}\text{T}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$

Photometric

Unified Schrodinger SI2019
luminous flux $\text{J}$ $\text{T}^{2}$ $\text{cd}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{T}^{2}$ $\text{cd}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{L}^{-2}\text{T}^{2}$ $\text{lx}$
illuminance $\text{L}^{-2}\text{J}$ $\text{L}^{-2}\text{T}^{2}$ $\text{lx}$
luminous energy $\text{T}\cdot \text{J}$ $\text{T}^{3}$ $\text{s}\cdot \text{lm}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{L}^{-2}\text{T}^{3}$ $\text{lx} \cdot \text{s}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{5}$ $\text{lm} \cdot \text{W}^{-1}$