Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$1.185157(13) \times
10^{-38}$
$\left[\text{s}\right]/\left[\text{T}\right]$ |
$\hbar\cdot
\text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
angular time |
$1.185157(13) \times
10^{-38}$
$\left[\text{s}\right]/\left[\text{T}\right]$ |
$\hbar\cdot
\text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
length |
$2.592758(29) \times
10^{-32}$
$\left[\text{m}\right]/\left[\text{L}\right]$ |
$\hbar\cdot
\text{c}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
angular length |
$2.592758(29) \times
10^{-32}$
$\left[\text{m}\right]/\left[\text{L}\right]$ |
$\hbar\cdot
\text{c}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
area |
$6.72239(15) \times
10^{-64}$
$\left[\text{m}^{2}\right]/\left[\text{L}^{2}\right]$ |
$\hbar^{2}\text{c}^{-2}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$ |
angular area |
$6.72239(15) \times
10^{-64}$
$\left[\text{m}^{2}\right]/\left[\text{L}^{2}\right]$ |
$\hbar^{2}\text{c}^{-2}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$ |
volume |
$1.742954(58) \times
10^{-95}$
$\left[\text{m}^{3}\right]/\left[\text{L}^{3}\right]$ |
$\hbar^{3}\text{c}^{-3}\alpha^{-9/2}\text{m}_\text{P}^{-3}\tau^{-3}$ |
wavenumber |
$3.856897(43) \times
10^{31}$
$\left[\text{m}^{-1}\right]/\left[\text{L}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\alpha^{3/2}\text{m}_\text{P}\cdot \tau$ |
angular wavenumber |
$3.856897(43) \times
10^{31}$
$\left[\text{m}^{-1}\right]/\left[\text{L}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\alpha^{3/2}\text{m}_\text{P}\cdot \tau$ |
fuel efficiency |
$1.487565(33) \times
10^{63}$
$\left[\text{m}^{-2}\right]/\left[\text{L}^{-2}\right]$ |
$\hbar^{-2}\text{c}^{2}\alpha^{3}\text{m}_\text{P}^{2}\tau^{2}$ |
number density |
$5.73739(19) \times
10^{94}$
$\left[\text{m}^{-3}\right]/\left[\text{L}^{-3}\right]$ |
$\hbar^{-3}\text{c}^{3}\alpha^{9/2}\text{m}_\text{P}^{3}\tau^{3}$ |
frequency |
$8.437700(93) \times
10^{37}$
$\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot
\tau$ |
angular frequency |
$8.437700(93) \times
10^{37}$
$\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot
\tau$ |
frequency drift |
$7.11948(16) \times
10^{75}$ $\left[\text{Hz} \cdot
\text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ |
$\hbar^{-2}\text{c}^{4}\alpha^{5}\text{m}_\text{P}^{2}\tau^{2}$ |
stagnance |
$4.57102890440(70)
\times 10^{-7}$
$\left[\text{m}^{-1}\text{s}\right]/\left[\text{L}^{-1}\text{T}\right]$ |
$\text{c}^{-1}\alpha^{-1}$ |
speed |
$2.18769126364(34)
\times 10^{6}$ $\left[\text{m}\cdot
\text{s}^{-1}\right]/\left[\text{L}\cdot
\text{T}^{-1}\right]$ |
$\text{c}\cdot
\alpha$ |
acceleration |
$1.845908(20) \times
10^{44}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{L}\cdot
\text{T}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{3}\alpha^{7/2}\text{m}_\text{P}\cdot
\tau$ |
jerk |
$1.557522(34) \times
10^{82}$ $\left[\text{m}\cdot
\text{s}^{-3}\right]/\left[\text{L}\cdot
\text{T}^{-3}\right]$ |
$\hbar^{-2}\text{c}^{5}\alpha^{6}\text{m}_\text{P}^{2}\tau^{2}$ |
snap |
$1.314190(43) \times
10^{120}$ $\left[\text{m}\cdot
\text{s}^{-4}\right]/\left[\text{L}\cdot
\text{T}^{-4}\right]$ |
$\hbar^{-3}\text{c}^{7}\alpha^{17/2}\text{m}_\text{P}^{3}\tau^{3}$ |
crackle |
$1.108874(49) \times
10^{158}$ $\left[\text{m}\cdot
\text{s}^{-5}\right]/\left[\text{L}\cdot
\text{T}^{-5}\right]$ |
$\hbar^{-4}\text{c}^{9}\alpha^{11}\text{m}_\text{P}^{4}\tau^{4}$ |
pop |
$9.35635(52) \times
10^{195}$ $\left[\text{m}\cdot
\text{s}^{-6}\right]/\left[\text{L}\cdot
\text{T}^{-6}\right]$ |
$\hbar^{-5}\text{c}^{11}\alpha^{27/2}\text{m}_\text{P}^{5}\tau^{5}$ |
volume flow |
$1.470652(32) \times
10^{-57}$
$\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{L}^{3}\text{T}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-1}\alpha^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$ |
etendue |
$6.72239(15) \times
10^{-64}$
$\left[\text{m}^{2}\right]/\left[\text{L}^{2}\right]$ |
$\hbar^{2}\text{c}^{-2}\alpha^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$ |
photon intensity |
$8.437700(93) \times
10^{37}$
$\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot
\tau$ |
photon irradiance |
$1.762999(19) \times
10^{25}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{L}^{-2}\text{T}\right]$ |
$\hbar^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot
\tau$ |
photon radiance |
$1.762999(19) \times
10^{25}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{L}^{-2}\text{T}\right]$ |
$\hbar^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot
\tau$ |
Name |
Quantity |
Product |
inertia |
$1.859209(21) \times
10^{-9}$
$\left[\text{kg}\right]/\left[\text{M}\right]$ |
$\alpha^{1/2}\text{m}_\text{P}$ |
mass |
$1.859209(21) \times
10^{-9}$
$\left[\text{kg}\right]/\left[\text{M}\right]$ |
$\alpha^{1/2}\text{m}_\text{P}$ |
mass flow |
$1.568745(35) \times
10^{29}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{M}\cdot
\text{T}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{2}\alpha^{3}\text{m}_\text{P}^{2}\tau$ |
linear density |
$7.17078(16) \times
10^{22}$ $\left[\text{kg}\cdot
\text{m}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\alpha^{2}\text{m}_\text{P}^{2}\tau$ |
area density |
$2.765695(91) \times
10^{54}$ $\left[\text{kg}\cdot
\text{m}^{-2}\right]/\left[\text{M}\cdot
\text{L}^{-2}\right]$ |
$\hbar^{-2}\text{c}^{2}\alpha^{7/2}\text{m}_\text{P}^{3}\tau^{2}$ |
density |
$1.066700(47) \times
10^{86}$ $\left[\text{kg}\cdot
\text{m}^{-3}\right]/\left[\text{M}\cdot
\text{L}^{-3}\right]$ |
$\hbar^{-3}\text{c}^{3}\alpha^{5}\text{m}_\text{P}^{4}\tau^{3}$ |
specific weight |
$1.96903(11) \times
10^{130}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]/\left[\text{M}\cdot
\text{L}^{-2}\text{T}^{-2}\right]$ |
$\hbar^{-4}\text{c}^{6}\alpha^{17/2}\text{m}_\text{P}^{5}\tau^{4}$ |
specific volume |
$9.37471(41) \times
10^{-87}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ |
$\hbar^{3}\text{c}^{-3}\alpha^{-5}\text{m}_\text{P}^{-4}\tau^{-3}$ |
force |
$3.431929(76) \times
10^{35}$
$\left[\text{N}\right]/\left[\text{M}\cdot
\text{L}\cdot \text{T}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{3}\alpha^{4}\text{m}_\text{P}^{2}\tau$ |
specific force |
$1.845908(20) \times
10^{44}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{L}\cdot
\text{T}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{3}\alpha^{7/2}\text{m}_\text{P}\cdot
\tau$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$5.10522(23) \times
10^{98}$
$\left[\text{Pa}\right]/\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-2}\right]$ |
$\hbar^{-3}\text{c}^{5}\alpha^{7}\text{m}_\text{P}^{4}\tau^{3}$ |
compressibility |
$1.958780(86) \times
10^{-99}$
$\left[\text{Pa}^{-1}\right]/\left[\text{M}^{-1}\text{L}\cdot
\text{T}^{2}\right]$ |
$\hbar^{3}\text{c}^{-5}\alpha^{-7}\text{m}_\text{P}^{-4}\tau^{-3}$ |
viscosity |
$6.05049(20) \times
10^{60}$ $\left[\text{Pa} \cdot
\text{s}\right]/\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}\right]$ |
$\hbar^{-2}\text{c}^{3}\alpha^{9/2}\text{m}_\text{P}^{3}\tau^{2}$ |
diffusivity |
$5.672154(63) \times
10^{-26}$
$\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ |
$\hbar\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
rotational inertia |
$1.249833(14) \times
10^{-72}$ $\left[\text{kg}\cdot
\text{m}^{2}\right]/\left[\text{M}\cdot
\text{L}^{2}\right]$ |
$\hbar^{2}\text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-2}$ |
impulse |
$0.004067375(45)$ $\left[\text{N}
\cdot \text{s}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-1}\right]$ |
$\text{c}\cdot
\alpha^{3/2}\text{m}_\text{P}$ |
momentum |
$0.004067375(45)$ $\left[\text{N}
\cdot \text{s}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-1}\right]$ |
$\text{c}\cdot
\alpha^{3/2}\text{m}_\text{P}$ |
angular momentum |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
yank |
$2.895759(96) \times
10^{73}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-3}\right]$ |
$\hbar^{-2}\text{c}^{5}\alpha^{13/2}\text{m}_\text{P}^{3}\tau^{2}$ |
energy |
$8898.160(98)$
$\left[\text{J}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\right]$ |
$\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}$ |
specific energy |
$4.7859930650(15)
\times 10^{12}$ $\left[\text{J} \cdot
\text{kg}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-2}\right]$ |
$\text{c}^{2}\alpha^{2}$ |
action |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
fluence |
$1.323660(44) \times
10^{67}$ $\left[\text{N} \cdot
\text{m}^{-1}\right]/\left[\text{M}\cdot
\text{T}^{-2}\right]$ |
$\hbar^{-2}\text{c}^{4}\alpha^{11/2}\text{m}_\text{P}^{3}\tau^{2}$ |
power |
$7.50800(17) \times
10^{41}$
$\left[\text{W}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-3}\right]$ |
$\hbar^{-1}\text{c}^{4}\alpha^{5}\text{m}_\text{P}^{2}\tau$ |
power density |
$4.30763(24) \times
10^{136}$ $\left[\text{W} \cdot
\text{m}^{-3}\right]/\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-3}\right]$ |
$\hbar^{-4}\text{c}^{7}\alpha^{19/2}\text{m}_\text{P}^{5}\tau^{4}$ |
irradiance |
$1.116864(49) \times
10^{105}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{M}\cdot
\text{T}^{-3}\right]$ |
$\hbar^{-3}\text{c}^{6}\alpha^{8}\text{m}_\text{P}^{4}\tau^{3}$ |
radiance |
$1.116864(49) \times
10^{105}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{M}\cdot
\text{T}^{-3}\right]$ |
$\hbar^{-3}\text{c}^{6}\alpha^{8}\text{m}_\text{P}^{4}\tau^{3}$ |
radiant intensity |
$7.50800(17) \times
10^{41}$
$\left[\text{W}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-3}\right]$ |
$\hbar^{-1}\text{c}^{4}\alpha^{5}\text{m}_\text{P}^{2}\tau$ |
spectral flux |
$2.895759(96) \times
10^{73}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-3}\right]$ |
$\hbar^{-2}\text{c}^{5}\alpha^{13/2}\text{m}_\text{P}^{3}\tau^{2}$ |
spectral exposure |
$1.568745(35) \times
10^{29}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{M}\cdot
\text{T}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{2}\alpha^{3}\text{m}_\text{P}^{2}\tau$ |
sound exposure |
$3.08891(24) \times
10^{159}$
$\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{M}^{2}\text{L}^{-2}\text{T}^{-3}\right]$ |
$\hbar^{-5}\text{c}^{8}\alpha^{23/2}\text{m}_\text{P}^{7}\tau^{5}$ |
impedance |
$3.47140(23) \times
10^{155}$ $\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{-4}\text{T}^{-1}\right]$ |
$\hbar^{-5}\text{c}^{6}\alpha^{9}\text{m}_\text{P}^{6}\tau^{5}$ |
specific impedance |
$2.33361(10) \times
10^{92}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\right]$ |
$\hbar^{-3}\text{c}^{4}\alpha^{6}\text{m}_\text{P}^{4}\tau^{3}$ |
admittance |
$2.88068(19) \times
10^{-156}$
$\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{M}^{-1}\text{L}^{4}\text{T}\right]$ |
$\hbar^{5}\text{c}^{-6}\alpha^{-9}\text{m}_\text{P}^{-6}\tau^{-5}$ |
compliance |
$7.55481(25) \times
10^{-68}$ $\left[\text{m} \cdot
\text{N}^{-1}\right]/\left[\text{M}^{-1}\text{T}^{2}\right]$ |
$\hbar^{2}\text{c}^{-4}\alpha^{-11/2}\text{m}_\text{P}^{-3}\tau^{-2}$ |
inertance |
$4.11415(23) \times
10^{117}$ $\left[\text{kg}\cdot
\text{m}^{-4}\right]/\left[\text{M}\cdot
\text{L}^{-4}\right]$ |
$\hbar^{-4}\text{c}^{4}\alpha^{13/2}\text{m}_\text{P}^{5}\tau^{4}$ |
Name |
Quantity |
Product |
charge |
$1.602176634 \times
10^{-19}$
$\left[\text{C}\right]/\left[\text{e}\right]$ |
$\text{e}$ |
charge density |
$9.19231(30) \times
10^{75}$
$\left[\text{m}^{-3}\text{C}\right]/\left[\text{L}^{-3}\text{Q}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{e}\cdot
\alpha^{9/2}\text{m}_\text{P}^{3}\tau^{3}$ |
linear charge
density |
$6.179430(68) \times
10^{12}$
$\left[\text{m}^{-1}\text{C}\right]/\left[\text{L}^{-1}\text{Q}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{e}\cdot
\alpha^{3/2}\text{m}_\text{P}\cdot \tau$ |
exposure |
$8.617519(95) \times
10^{-11}$
$\left[\text{kg}^{-1}\text{C}\right]/\left[\text{M}^{-1}\text{Q}\right]$ |
$\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-1}$ |
mobility |
$0.00315019786127(97)$
$\left[\text{m}^2 \text{s}^{-1}
\text{V}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{4}\text{T}^{-3}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{e}^{-1}\alpha^{2}\tau^{-1}$ |
current |
$1.351869(15) \times
10^{19}$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{e}\cdot
\alpha^{5/2}\text{m}_\text{P}\cdot \tau$ |
current density |
$2.010993(67) \times
10^{82}$
$\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{L}^{-2}\text{T}^{-1}\text{Q}\right]$ |
$\hbar^{-3}\text{c}^{4}\text{e}\cdot
\alpha^{11/2}\text{m}_\text{P}^{3}\tau^{3}$ |
resistance |
$4108.2359022276605$
$\left[\Omega\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{e}^{-2}\tau^{-1}$ |
conductance |
$0.00024341348057879472$
$\left[\text{S}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot
\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{e}^{2}\tau$ |
resistivity |
$1.065166(12) \times
10^{-28}$ $\left[\Omega \cdot
\text{m}\right]/\left[\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-1}\text{e}^{-2}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-2}$ |
conductivity |
$9.38821(10) \times
10^{27}$ $\left[\text{S} \cdot
\text{m}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-3}\text{T}\cdot
\text{Q}^{2}\right]$ |
$\hbar^{-2}\text{c}\cdot
\text{e}^{2}\alpha^{3/2}\text{m}_\text{P}\cdot
\tau^{2}$ |
capacitance |
$2.884832(32) \times
10^{-42}$
$\left[\text{F}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}\right]$ |
$\text{c}^{-2}\text{e}^{2}\alpha^{-5/2}\text{m}_\text{P}^{-1}$ |
inductance |
$4.868905(54) \times
10^{-35}$
$\left[\text{H}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-2}$ |
reluctance |
$2.053850(23) \times
10^{34}$
$\left[\text{H}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot
\tau^{2}$ |
permeance |
$4.868905(54) \times
10^{-35}$
$\left[\text{H}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-2}$ |
permittivity |
$1.11265005545(17)
\times 10^{-10}$ $\left[\text{F} \cdot
\text{m}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
permeability |
$0.00187788650552(29)$
$\left[\text{H} \cdot
\text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\alpha^{-1}\tau^{-1}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$9.37471(41) \times
10^{-87}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ |
$\hbar^{3}\text{c}^{-3}\alpha^{-5}\text{m}_\text{P}^{-4}\tau^{-3}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$2.538656(28) \times
10^{16}$ $\left[\text{Wb} \cdot
\text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\text{c}\cdot
\text{e}^{-1}\alpha^{3/2}\text{m}_\text{P}$ |
electric potential |
$5.553795(61) \times
10^{22}$
$\left[\text{V}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\text{Q}^{-1}\right]$ |
$\text{c}^{2}\text{e}^{-1}\alpha^{5/2}\text{m}_\text{P}$ |
magnetic potential |
$1.351869(15) \times
10^{19}$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{e}\cdot
\alpha^{5/2}\text{m}_\text{P}\cdot \tau$ |
electric field |
$2.142041(47) \times
10^{54}$ $\left[\text{V} \cdot
\text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-2}\text{Q}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{3}\text{e}^{-1}\alpha^{4}\text{m}_\text{P}^{2}\tau$ |
magnetic field |
$5.21402(11) \times
10^{50}$
$\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{L}^{-1}\text{T}^{-1}\text{Q}\right]$ |
$\hbar^{-2}\text{c}^{3}\text{e}\cdot
\alpha^{4}\text{m}_\text{P}^{2}\tau^{2}$ |
electric flux |
$1.43996454784(22)
\times 10^{-9}$ $\left[\text{V} \cdot
\text{m}\right]/\left[\text{M}\cdot
\text{L}^{3}\text{T}^{-2}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-1}\alpha\cdot
\tau^{-1}$ |
magnetic flux |
$6.582119569509067
\times 10^{-16}$
$\left[\text{Wb}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\tau^{-1}$ |
electric
displacement |
$2.383343(53) \times
10^{44}$
$\left[\text{m}^{-2}\text{C}\right]/\left[\text{L}^{-2}\text{Q}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{e}\cdot
\alpha^{3}\text{m}_\text{P}^{2}\tau^{2}$ |
magnetic flux
density |
$9.79133(22) \times
10^{47}$
$\left[\text{T}\right]/\left[\text{M}\cdot
\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{e}^{-1}\alpha^{3}\text{m}_\text{P}^{2}\tau$ |
electric dipole
moment |
$4.154056(46) \times
10^{-51}$ $\left[\text{m}\cdot
\text{C}\right]/\left[\text{L}\cdot
\text{Q}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}\cdot
\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
magnetic dipole
moment |
$9.08779(10) \times
10^{-45}$ $\left[\text{J} \cdot
\text{T}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\text{Q}\right]$ |
$\hbar\cdot
\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
electric
polarizability |
$1.939298(64) \times
10^{-105}$
$\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{M}^{-1}\text{T}^{2}\text{Q}^{2}\right]$ |
$\hbar^{2}\text{c}^{-4}\text{e}^{2}\alpha^{-11/2}\text{m}_\text{P}^{-3}\tau^{-2}$ |
magnetic
polarizability |
$1.742954(58) \times
10^{-95}$
$\left[\text{m}^{3}\right]/\left[\text{L}^{3}\right]$ |
$\hbar^{3}\text{c}^{-3}\alpha^{-9/2}\text{m}_\text{P}^{-3}\tau^{-3}$ |
magnetic moment |
$1.706584(19) \times
10^{-47}$ $\left[\text{Wb} \cdot
\text{m}\right]/\left[\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-1}\text{e}^{-1}\alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-2}$ |
specific
magnetization |
$1.089433(24) \times
10^{38}$ $\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]/\left[\text{L}^{-3}\text{T}\cdot
\text{Q}\right]$ |
$\hbar^{-2}\text{c}\cdot \text{e}\cdot
\alpha^{2}\text{m}_\text{P}^{2}\tau^{2}$ |
pole strength |
$3.50506782501(54)
\times 10^{-13}$ $\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]/\left[\text{L}\cdot
\text{T}^{-1}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot \alpha$ |
Name |
Quantity |
Product |
temperature |
$6.444911(71) \times
10^{26}$
$\left[\text{K}\right]/\left[\text{T}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}$ |
entropy |
$1.380649 \times
10^{-23}$ $\left[\text{J} \cdot
\text{K}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}$ |
specific entropy |
$7.426003(82) \times
10^{-15}$ $\left[\text{J} \cdot
\text{K}^{-1}
\text{kg}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-1}$ |
volume heat capacity |
$7.92132(26) \times
10^{71}$ $\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-3}\text{c}^{3}\alpha^{9/2}\text{m}_\text{P}^{3}\tau^{3}$ |
thermal conductivity |
$4.493093(99) \times
10^{46}$ $\left[\text{W} \cdot
\text{m}^{-1} \text{K}^{-1}\right]/\left[\text{M}\cdot
\text{L}\cdot \text{T}^{-2}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-2}\text{c}^{3}\alpha^{4}\text{m}_\text{P}^{2}\tau^{2}$ |
thermal conductance |
$1.164950(13) \times
10^{15}$ $\left[\text{W} \cdot
\text{K}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{2}\alpha^{5/2}\text{m}_\text{P}\cdot
\tau$ |
thermal resistivity |
$2.225638(49) \times
10^{-47}$ $\left[\text{K} \cdot \text{m}
\cdot
\text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-1}\text{T}^{2}\right]$ |
$\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\alpha^{-4}\text{m}_\text{P}^{-2}\tau^{-2}$ |
thermal resistance |
$8.584058(95) \times
10^{-16}$ $\left[\text{K} \cdot
\text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot
\text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
thermal expansion |
$1.551612(17) \times
10^{-27}$
$\left[\text{K}^{-1}\right]/\left[\text{T}\right]$ |
$\text{k}_\text{B}\cdot
\text{c}^{-2}\alpha^{-5/2}\text{m}_\text{P}^{-1}$ |
lapse rate |
$2.485736(55) \times
10^{58}$
$\left[\text{m}^{-1}\text{K}\right]/\left[\text{L}^{-1}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar^{-1}\text{c}^{3}\alpha^{4}\text{m}_\text{P}^{2}\tau$ |
Name |
Quantity |
Product |
molar mass |
$0.00099999999966(31)$
$\left[\text{kg}\cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molality |
$1000.000000340000000(31)$
$\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molar amount |
$1.859209(21) \times
10^{-6}$
$\left[\text{mol}\right]/\left[\text{M}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot
\text{m}_\text{P}\cdot 2^{-1}$ |
molarity |
$1.066700(47) \times
10^{89}$
$\left[\text{m}^{-3}\text{mol}\right]/\left[\text{M}\cdot
\text{L}^{-3}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{7}\mu_\text{eu}\cdot
\text{m}_\text{P}^{4}\tau^{3}2^{-1}$ |
molar volume |
$9.37471(41) \times
10^{-90}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot
\alpha^{-7}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-3}2$ |
molar entropy |
$7.426003(82) \times
10^{-18}$ $\left[\text{J} \cdot
\text{K}^{-1}
\text{mol}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-5/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$ |
molar energy |
$4.78599306335(14)
\times 10^{9}$ $\left[\text{J} \cdot
\text{mol}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-2}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \mu_\text{eu}^{-1}2$ |
molar conductivity |
$3.394520(75) \times
10^{-30}$ $\left[\text{S} \cdot \text{m}^2
\text{mol}^{-1}\right]/\left[\text{M}^{-2}\text{L}^{-1}\text{T}\cdot
\text{Q}^{2}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-2}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-4}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}2$ |
molar susceptibility |
$9.37471(41) \times
10^{-90}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot
\alpha^{-7}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-3}2$ |
catalysis |
$1.568745(35) \times
10^{32}$
$\left[\text{kat}\right]/\left[\text{M}\cdot
\text{T}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{5}\mu_\text{eu}\cdot
\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$ |
specificity |
$7.91010(26) \times
10^{-52}$
$\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\text{T}^{-1}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{3}\text{c}^{-2}\text{R}_{\infty}\cdot
\alpha^{-9/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-3}\tau^{-2}2$ |
diffusion flux |
$3.277783(72) \times
10^{19}$ $\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]/\left[\text{M}\cdot
\text{L}^{-2}\text{T}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot
\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$ |
|
Unified |
Schrodinger |
SI2019 |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{T}$ |
$\text{s}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{T}$ |
$\text{s}$ |
length |
$\text{L}$ |
$\text{L}$ |
$\text{m}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{L}$ |
$\text{m}$ |
area |
$\text{L}^{2}$ |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
volume |
$\text{L}^{3}$ |
$\text{L}^{3}$ |
$\text{m}^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{L}^{-1}$ |
$\text{m}^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{L}^{-1}$ |
$\text{m}^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{L}^{-2}$ |
$\text{m}^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{L}^{-3}$ |
$\text{m}^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{T}^{-1}$ |
$\text{Hz}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{T}^{-1}$ |
$\text{Hz}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{L}^{-1}\text{T}$ |
$\text{m}^{-1}\text{s}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{T}^{-1}$ |
$\text{Hz}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
|
Unified |
Schrodinger |
SI2019 |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{M}$ |
$\text{kg}$ |
mass |
$\text{M}$ |
$\text{M}$ |
$\text{kg}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
force |
$\text{F}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}$ |
$\text{N}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-2}$ |
$\text{Pa}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{M}^{-1}\text{L}\cdot
\text{T}^{2}$ |
$\text{Pa}^{-1}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{Pa} \cdot
\text{s}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}$ |
$\text{J}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{L}^{2}\text{T}^{-2}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{M}\cdot
\text{T}^{-2}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-3}$ |
$\text{W}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-3}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{M}\cdot
\text{T}^{-3}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{M}\cdot
\text{T}^{-3}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-3}$ |
$\text{W}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{M}^{2}\text{L}^{-2}\text{T}^{-3}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{M}\cdot
\text{L}^{-4}\text{T}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{M}^{-1}\text{L}^{4}\text{T}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
|
Unified |
Schrodinger |
SI2019 |
charge |
$\text{Q}$ |
$\text{e}$ |
$\text{C}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{L}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{L}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{M}^{-1}\text{Q}$ |
$\text{kg}^{-1}\text{C}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}^{4}\text{T}^{-3}\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-2}$ |
$\Omega$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}\cdot
\text{Q}^{2}$ |
$\text{S}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}\text{L}^{-3}\text{T}\cdot
\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}$ |
$\text{F}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}$ |
$\text{H}^{-1}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{M}\cdot
\text{L}\cdot \text{Q}^{-2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}\text{Q}^{-1}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\text{Q}^{-1}$ |
$\text{V}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{L}^{-1}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{Wb}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{L}^{-2}\text{Q}$ |
$\text{m}^{-2}\text{C}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{T}^{-1}\text{Q}^{-1}$ |
$\text{T}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{L}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}\text{Q}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{M}^{-1}\text{T}^{2}\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{L}^{3}$ |
$\text{m}^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{Wb} \cdot
\text{m}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{L}^{-3}\text{T}\cdot \text{Q}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{L}\cdot
\text{T}^{-1}\text{Q}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
|
Unified |
Schrodinger |
SI2019 |
temperature |
$\Theta$ |
$\text{T}^{-1}$ |
$\text{K}$ |
entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1}$ |
specific entropy |
$\text{F}\cdot
\text{M}^{-1}\text{L}\cdot \Theta^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{kg}^{-1}$ |
volume heat capacity |
$\text{F}\cdot
\text{L}^{-2}\Theta^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ |
thermal conductivity |
$\text{F}\cdot
\text{T}^{-1}\Theta^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}$ |
$\text{W} \cdot
\text{m}^{-1} \text{K}^{-1}$ |
thermal conductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\Theta^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}$ |
$\text{W} \cdot
\text{K}^{-1}$ |
thermal resistivity |
$\text{F}^{-1}\text{T}\cdot \Theta$ |
$\text{M}^{-1}\text{L}^{-1}\text{T}^{2}$ |
$\text{K} \cdot
\text{m} \cdot \text{W}^{-1}$ |
thermal resistance |
$\text{F}^{-1}\text{L}^{-1}\text{T}\cdot
\Theta$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}^{2}$ |
$\text{K} \cdot
\text{W}^{-1}$ |
thermal expansion |
$\Theta^{-1}$ |
$\text{T}$ |
$\text{K}^{-1}$ |
lapse rate |
$\text{L}^{-1}\Theta$ |
$\text{L}^{-1}\text{T}^{-1}$ |
$\text{m}^{-1}\text{K}$ |
|
Unified |
Schrodinger |
SI2019 |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{mol}$ |
molar amount |
$\text{N}$ |
$\text{M}$ |
$\text{mol}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{m}^{-3}\text{mol}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{L}^{2}\text{T}^{-2}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{M}^{-2}\text{L}^{-1}\text{T}\cdot
\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{kat}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |