Standard Units
- Standard Units
Similar to how SI defines standardized units of
kilogram
, meter
,
second
, kelvin
,
coulomb
, candela
, and
mole
; the following is a comprehensive
selection of generated standardized physics units defined
by UnitSystem
defaults useful for scientists
and engineers.
Prefix Units
MeasureSystems.centi
— Constant
julia> deci # 𝟏𝟎^-1
2⁻¹5⁻¹ = 0.1
julia> centi # 𝟏𝟎^-2
2⁻²5⁻² = 0.010000000000000002
julia> milli # 𝟏𝟎^-3
2⁻³5⁻³ = 0.001
julia> micro # 𝟏𝟎^-6
2⁻⁶5⁻⁶ = 1.0×10⁻⁶
julia> nano # 𝟏𝟎^-9
2⁻⁹5⁻⁹ = 1.0×10⁻⁹
julia> pico # 𝟏𝟎^-12
2⁻¹²5⁻¹² = 1.0×10⁻¹²
julia> femto # 𝟏𝟎^-15
2⁻¹⁵5⁻¹⁵ = 1.0×10⁻¹⁵
julia> atto # 𝟏𝟎^-18
2⁻¹⁸5⁻¹⁸ = 1.0×10⁻¹⁸
julia> zepto # 𝟏𝟎^-21
2⁻²¹5⁻²¹ = 1.0×10⁻²¹
julia> yocto # 𝟏𝟎^-24
2⁻²⁴5⁻²⁴ = 1.0×10⁻²⁴
MeasureSystems.kilo
— Constant
julia> deka # 𝟏𝟎
2⋅5 = 10.0
julia> hecto # 𝟏𝟎^2
2²5² = 100.0
julia> kilo # 𝟏𝟎^3
2³5³ = 1000.0
julia> mega # 𝟏𝟎^6
2⁶5⁶ = 1.0×10⁶
julia> giga # 𝟏𝟎^9
2⁹5⁹ = 1.0×10⁹
julia> tera # 𝟏𝟎^12
2¹²5¹² = 1.0×10¹²
julia> peta # 𝟏𝟎^15
2¹⁵5¹⁵ = 1.0×10¹⁵
julia> exa # 𝟏𝟎^18
2¹⁸5¹⁸ = 1.0×10¹⁸
julia> zetta # 𝟏𝟎^21
2²¹5²¹ = 1.0×10²¹
julia> yotta # 𝟏𝟎^24
2²⁴5²⁴ = 1.0×10²⁴
MeasureSystems.byte
— Constant
julia> byte # 𝟐^3
2³ = 8.0
julia> kibi # 𝟐^10
2¹⁰ = 1024.0
julia> mebi # 𝟐^20
2²⁰ = 1.048576×10⁶
julia> gibi # 𝟐^30
2³⁰ = 1.073741824×10⁹
julia> tebi # 𝟐^40
2⁴⁰ = 1.099511627776×10¹²
julia> pebi # 𝟐^50
2⁵⁰ = 1.125899906842624×10¹⁵
julia> exbi # 𝟐^60
2⁶⁰ = 1.152921504606847×10¹⁸
julia> zebi # 𝟐^70
2⁷⁰ = 1.1805916207174113×10²¹
julia> yobi # 𝟐^80
2⁸⁰ = 1.2089258196146292×10²⁴
Mechanics Units
Angle Units
MeasureSystems.turn
— Constant
turn(U::UnitSystem) = 2π/angle(U)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ = 6.283185307179586) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified
Complete rotation angle
of revolution
from a full circle.
julia> turn(Engineering) # rad
τ = 6.283185307179586 [rad] Engineering
julia> turn(MetricDegree) # deg
2³3²5 = 360.0 [deg] MetricDegree
julia> turn(MetricArcminute) # amin
2⁵3³5² = 21600.0 [amin] MetricArcminute
julia> turn(MetricArcsecond) # asec
2⁷3⁴5³ = 1.296×10⁶ [asec] MetricArcsecond
julia> turn(MetricGradian) # gon
2⁴5² = 400.0 [gon] MetricGradian
MeasureSystems.radian
— Constant
radian(U::UnitSystem) = angle(𝟏,U,Metric)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified
Unit of angle
which is dimensionless
(rad).
julia> radian(Engineering) # rad
𝟏 = 1.0 [rad] Engineering
julia> radian(MetricDegree) # deg
τ⁻¹2³3²5 = 57.29577951308232 [deg] MetricDegree
julia> radian(MetricArcminute) # amin
τ⁻¹2⁵3³5² = 3437.7467707849396 [amin] MetricArcminute
julia> radian(MetricArcsecond) # asec
τ⁻¹2⁷3⁴5³ = 206264.80624709636 [asec] MetricArcsecond
julia> radian(MetricGradian) # gon
τ⁻¹2⁴5² = 63.66197723675814 [gon] MetricGradian
MeasureSystems.spatian
— Constant
spatian(U::UnitSystem) = angle(𝟏,U,MetricSpatian)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ¹ᐟ²2¹ᐟ² = 3.5449077018110318) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified
Unit of angle
which is dimensionless
(rad).
julia> spatian(Engineering) # rad
τ¹ᐟ²2¹ᐟ² = 3.5449077018110318 [rad] Engineering
julia> spatian(MetricDegree) # deg
τ⁻¹ᐟ²2⁷ᐟ²3²5 = 203.1082500771923 [deg] MetricDegree
julia> spatian(MetricArcminute) # amin
τ⁻¹ᐟ²2¹¹ᐟ²3³5² = 12186.495004631537 [amin] MetricArcminute
julia> spatian(MetricArcsecond) # asec
τ⁻¹ᐟ²2¹⁵ᐟ²3⁴5³ = 731189.7002778922 [asec] MetricArcsecond
julia> spatian(MetricGradian) # gon
τ⁻¹ᐟ²2⁹ᐟ²5² = 225.67583341910253 [gon] MetricGradian
MeasureSystems.gradian
— Constant
gradian(U::UnitSystem) = angle(𝟏,U,MetricGradian)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁴5⁻² = 0.015707963267948967) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified
Unit of angle
which divides a
turn
into 400
parts
(rad).
julia> gradian(Engineering) # rad
τ⋅2⁻⁴5⁻² = 0.015707963267948967 [rad] Engineering
julia> gradian(MetricDegree) # deg
2⁻¹3²5⁻¹ = 0.9 [deg] MetricDegree
julia> gradian(MetricArcminute) # amin
2⋅3³ = 54.0 [amin] MetricArcminute
julia> gradian(MetricArcsecond) # asec
2³3⁴5 = 3240.0 [asec] MetricArcsecond
julia> gradian(MetricGradian) # gon
𝟏 = 1.0 [gon] MetricGradian
MeasureSystems.bradian
— Constant
bradian(U::UnitSystem) = angle(τ/𝟐^8,U,Metric)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁸ = 0.02454369260617026) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified
Unit of angle
which divides a
turn
into 𝟐^8
or
256
parts (rad).
julia> bradian(Engineering) # rad
τ⋅2⁻⁸ = 0.02454369260617026 [rad] Engineering
julia> bradian(MetricDegree) # deg
2⁻⁵3²5 = 1.40625 [deg] MetricDegree
julia> bradian(MetricArcminute) # amin
2⁻³3³5² = 84.375 [amin] MetricArcminute
julia> bradian(MetricArcsecond) # asec
2⁻¹3⁴5³ = 5062.5 [asec] MetricArcsecond
julia> bradian(MetricGradian) # gon
2⁻⁴5² = 1.5625 [gon] MetricGradian
MeasureSystems.degree
— Constant
degree(U::UnitSystem) = angle(𝟏,U,MetricDegree)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻³3⁻²5⁻¹ = 0.017453292519943295) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified
Unit of angle
which divides a
turn
into 360
parts
(rad).
julia> degree(Engineering) # rad
τ⋅2⁻³3⁻²5⁻¹ = 0.017453292519943295 [rad] Engineering
julia> degree(MetricDegree) # deg
𝟏 = 1.0 [deg] MetricDegree
julia> degree(MetricArcminute) # amin
2²3⋅5 = 60.0 [amin] MetricArcminute
julia> degree(MetricArcsecond) # asec
2⁴3²5² = 3600.0 [asec] MetricArcsecond
julia> degree(MetricGradian) # gon
2⋅3⁻²5 = 1.1111111111111112 [gon] MetricGradian
MeasureSystems.arcminute
— Constant
arcminute(U::UnitSystem) = angle(𝟏,U,MetricArcminute)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁵3⁻³5⁻² = 0.00029088820866572163) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified
Unit of angle
which divides a
degree
into 60
parts
(rad).
julia> arcminute(Engineering) # rad
τ⋅2⁻⁵3⁻³5⁻² = 0.00029088820866572163 [rad] Engineering
julia> arcminute(MetricDegree) # deg
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [deg] MetricDegree
julia> arcminute(MetricArcminute) # amin
𝟏 = 1.0 [amin] MetricArcminute
julia> arcminute(MetricArcsecond) # asec
2²3⋅5 = 60.0 [asec] MetricArcsecond
julia> arcminute(MetricGradian) # gon
2⁻¹3⁻³ = 0.018518518518518517 [gon] MetricGradian
MeasureSystems.arcsecond
— Constant
arcsecond(U::UnitSystem) = angle(𝟏,U,MetricArcsecond)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁷3⁻⁴5⁻³ = 4.84813681109536×10⁻⁶) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified
Unit of angle
which divides a
arcminute
into 60
parts
(rad).
julia> arcsecond(Engineering) # rad
τ⋅2⁻⁷3⁻⁴5⁻³ = 4.84813681109536×10⁻⁶ [rad] Engineering
julia> arcsecond(MetricDegree) # deg
2⁻⁴3⁻²5⁻² = 0.00027777777777777783 [deg] MetricDegree
julia> arcsecond(MetricArcminute) # amin
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [amin] MetricArcminute
julia> arcsecond(MetricArcsecond) # asec
𝟏 = 1.0 [asec] MetricArcsecond
julia> arcsecond(MetricGradian) # gon
2⁻³3⁻⁴5⁻¹ = 0.00030864197530864197 [gon] MetricGradian
Solid Angle Units
MeasureSystems.spat
— Constant
spat(U::UnitSystem) = 4π/solidangle(U)
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
A²⋅(τ⋅2 = 12.566370614359172) [ħ⁻²𝘤⁸mₑ⁴Kcd²ϕ⁻²g₀⁻⁴] Unified
Complete spherical solidangle
around
point from a full sphere.
julia> spat(Engineering) # rad²
τ⋅2 = 12.566370614359172 [rad²] Engineering
julia> spat(MetricDegree) # deg²
τ⁻¹2⁷3⁴5² = 41252.96124941928 [deg²] MetricDegree
julia> spat(MetricArcminute) # amin²
τ⁻¹2¹¹3⁶5⁴ = 1.485106604979094×10⁸ [amin²] MetricArcminute
julia> spat(MetricArcsecond) # asec²
τ⁻¹2¹⁵3⁸5⁶ = 5.346383777924738×10¹¹ [asec²] MetricArcsecond
julia> spat(MetricGradian) # gon²
τ⁻¹2⁹5⁴ = 50929.58178940651 [gon²] MetricGradian
MeasureSystems.steradian
— Constant
steradian(U::UnitSystem) = solidangle(𝟏,U,Metric)
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
A² [ħ⁻²𝘤⁸mₑ⁴Kcd²ϕ⁻²g₀⁻⁴] Unified
Unit of solidangle
which is
dimensionless (rad²).
julia> steradian(Engineering) # rad²
𝟏 = 1.0 [rad²] Engineering
julia> steradian(MetricDegree) # deg²
τ⁻²2⁶3⁴5² = 3282.8063500117446 [deg²] MetricDegree
julia> steradian(MetricArcminute) # amin²
τ⁻²2¹⁰3⁶5⁴ = 1.181810286004228×10⁷ [amin²] MetricArcminute
julia> steradian(MetricArcsecond) # asec²
τ⁻²2¹⁴3⁸5⁶ = 4.254517029615221×10¹⁰ [asec²] MetricArcsecond
julia> steradian(MetricGradian) # gon²
τ⁻²2⁸5⁴ = 4052.8473456935117 [gon²] MetricGradian
MeasureSystems.squaredegree
— Constant
squaredegree(U::UnitSystem) = solidangle(𝟏,U,MetricDegree)
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
A²⋅(τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087) [ħ⁻²𝘤⁸mₑ⁴Kcd²ϕ⁻²g₀⁻⁴] Unified
Unit of solidangle
which is a
degree
squared (rad²).
julia> squaredegree(Engineering) # rad²
τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087 [rad²] Engineering
julia> squaredegree(MetricDegree) # deg²
𝟏 = 1.0 [deg²] MetricDegree
julia> squaredegree(MetricArcminute) # amin²
2⁴3²5² = 3600.0 [amin²] MetricArcminute
julia> squaredegree(MetricArcsecond) # asec²
2⁸3⁴5⁴ = 1.296×10⁷ [asec²] MetricArcsecond
julia> squaredegree(MetricGradian) # gon²
2²3⁻⁴5² = 1.2345679012345678 [gon²] MetricGradian
Time Units
MeasureSystems.second
— Constant
second(U::UnitSystem) = time(𝟏,U,Metric)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2 = 7.7634407063(24) × 10²⁰) [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Unit of time
defined by
hyperfine
transition frequency of Cs-133
atom (s).
julia> second(Metric) # s
𝟏 = 1.0 [s] Metric
julia> second(MPH) # h
2⁻⁴3⁻²5⁻² = 0.00027777777777777783 [h] MPH
julia> second(IAU) # D
2⁻⁷3⁻³5⁻² = 1.1574074074074075×10⁻⁵ [D] IAU☉
MeasureSystems.minute
— Constant
minute(U::UnitSystem) = 𝟐^2*𝟑*𝟓*second(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2³3⋅5 = 4.6580644238(14) × 10²²) [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Unit of time
defined by 60
second
intervals (s).
julia> minute(Metric) # s
2²3⋅5 = 60.0 [s] Metric
julia> minute(MPH) # h
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [h] MPH
julia> minute(IAU) # D
2⁻⁵3⁻²5⁻¹ = 0.0006944444444444445 [D] IAU☉
MeasureSystems.hour
— Constant
hour(U::UnitSystem) = 𝟐^2*𝟑*𝟓*minute(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2⁵3²5² = 2.79483865428(86) × 10²⁴) [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Unit of time
defined by 60
minute
intervals (s).
julia> hour(Metric) # s
2⁴3²5² = 3600.0 [s] Metric
julia> hour(MPH) # h
𝟏 = 1.0 [h] MPH
julia> hour(IAU) # D
2⁻³3⁻¹ = 0.041666666666666664 [D] IAU☉
MeasureSystems.day
— Constant
day(U::UnitSystem) = 𝟐^3*𝟑*hour(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2⁸3³5² = 6.7076127703(21) × 10²⁵) [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Unit of time
defined by 24
hour
intervals (s).
julia> day(Metric) # s
2⁷3³5² = 86400.0 [s] Metric
julia> day(MPH) # h
2³3 = 24.0 [h] MPH
julia> day(IAU) # D
𝟏 = 1.0 [D] IAU☉
MeasureSystems.year
— Constant
year(U::UnitSystem) = aⱼ*day(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²aⱼ⋅τ⋅2⁸3³5² = 2.44995556434(75) × 10²⁸) [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Unit of time
defined by Julian
calendar year interval (s).
julia> year(Metric) # s
aⱼ⋅2⁷3³5² = 3.15576×10⁷ [s] Metric
julia> year(MPH) # h
aⱼ⋅2³3 = 8766.0 [h] MPH
julia> year(IAU) # D
aⱼ = 365.25 [D] IAU☉
Length Units
MeasureSystems.angstrom
— Constant
angstrom(U::UnitSystem) = hecto*pico*meter(U)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁻⁹5⁻¹⁰ = 258.960507484(79)) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Metric unit of length
(m or ft).
julia> angstrom(CGS) # cm
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [cm] Gauss
julia> angstrom(English) # ft
ft⁻¹2⁻¹⁰5⁻¹⁰ = 3.280839895013123×10⁻¹⁰ [ft] English
julia> angstrom(IPS) # in
ft⁻¹2⁻⁸3⋅5⁻¹⁰ = 3.937007874015747×10⁻⁹ [in] IPS
MeasureSystems.inch
— Constant
inch(U::UnitSystem) = length(𝟏,U,IPS)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⁻¹3⁻¹ = 6.5775968901(20) × 10¹⁰) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
English unit of length
(m or ft).
julia> inch(Metric) # m
ft⋅2⁻²3⁻¹ = 0.0254 [m] Metric
julia> inch(English) # ft
2⁻²3⁻¹ = 0.08333333333333333 [ft] English
julia> inch(IPS) # in
𝟏 = 1.0 [in] IPS
MeasureSystems.foot
— Constant
foot(U::UnitSystem) = length(𝟏,U,English)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2 = 7.8931162681(24) × 10¹¹) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
English unit of length
(m or ft).
julia> foot(Metric) # m
ft = 0.3048 [m] Metric
julia> foot(Survey) # ftUS
ft⋅ftUS⁻¹ = 0.9999980000000002 [ft] Survey
julia> foot(IPS) # in
2²3 = 12.0 [in] IPS
MeasureSystems.surveyfoot
— Constant
surveyfoot(U::UnitSystem) = length(𝟏,U,Survey)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ftUS⋅τ⋅2 = 7.8931320544(24) × 10¹¹) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Survey unit of length
(m or ft).
julia> surveyfoot(Metric) # m
ftUS = 0.3048006096012192 [m] Metric
julia> surveyfoot(English) # ft
ft⁻¹ftUS = 1.0000020000039997 [ft] English
julia> surveyfoot(IPS) # in
ft⁻¹ftUS⋅2²3 = 12.000024000047997 [in] IPS
MeasureSystems.yard
— Constant
yard(U::UnitSystem) = 𝟑*foot(U)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⋅3 = 2.36793488043(73) × 10¹²) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
English unit of length
(m or ft).
julia> yard(Metric) # m
ft⋅3 = 0.9144000000000001 [m] Metric
julia> yard(English) # ft
3 = 3.0 [ft] English
julia> yard(IPS) # in
2²3² = 36.0 [in] IPS
MeasureSystems.meter
— Constant
meter(U::UnitSystem) = length(𝟏,U,Metric)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2 = 2.58960507484(79) × 10¹²) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Metric unit of length
(m or ft).
julia> meter(CGS) # cm
2²5² = 100.0 [cm] Gauss
julia> meter(English) # ft
ft⁻¹ = 3.280839895013123 [ft] English
julia> meter(Meridian) # em
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹5⁷ = 0.9985540395(10) [em] Meridian
MeasureSystems.earthmeter
— Constant
earthmeter(U::UnitSystem) = greatcircle(U)/𝟐^9/𝟓^7
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2⁻⁸5⁻⁷ = 2.5933549636(27) × 10¹²) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Meridian unit of length
as originally
defined in France (m or ft).
julia> earthmeter(CGS) # cm
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁷5⁻⁵ = 100.144805430(10) [cm] Gauss
julia> earthmeter(English) # ft
g₀⁻¹ᐟ²ft⁻¹GME¹ᐟ²τ⋅2⁻⁹5⁻⁷ = 3.2855907293(33) [ft] English
julia> earthmeter(Meridian) # em
𝟏 = 1.0 [em] Meridian
MeasureSystems.mile
— Constant
mile(U::UnitSystem) = length(𝟏,U,MPH)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⁶3⋅5⋅11 = 4.1675653896(13) × 10¹⁵) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Statute English
mile (m or ft).
julia> mile(Metric) # m
ft⋅2⁵3⋅5⋅11 = 1609.344 [m] Metric
julia> mile(English) # ft
2⁵3⋅5⋅11 = 5280.0 [ft] English
julia> mile(Nautical) # nm
ft⋅ftUS⁻¹2⁵3⋅5⋅11 = 5279.989440000001 [ft] Survey
MeasureSystems.statutemile
— Constant
statutemile(U::UnitSystem) = length(𝟐^5*𝟑*𝟓*𝟏𝟏,U,Survey)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ftUS⋅τ⋅2⁶3⋅5⋅11 = 4.1675737247(13) × 10¹⁵) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Statute Survey
mile (m or ft).
julia> statutemile(Metric) # m
ftUS⋅2⁵3⋅5⋅11 = 1609.3472186944373 [m] Metric
julia> statutemile(English) # ft
ft⁻¹ftUS⋅2⁵3⋅5⋅11 = 5280.010560021119 [ft] English
julia> statutemile(Survey) # ftUS
2⁵3⋅5⋅11 = 5280.0 [ft] Survey
MeasureSystems.meridianmile
— Constant
meridianmile(U::UnitSystem) = length(𝟐^4*𝟓^5/𝟑^3,U,Metric)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁵3⁻³5⁵ = 4.7955649534(15) × 10¹⁵) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Historic nautical mile as defined by naive meridian assumption (m or ft).
julia> meridianmile(Metric) # m
2⁴3⁻³5⁵ = 1851.8518518518517 [m] Metric
julia> meridianmile(English) # ft
ft⁻¹2⁴3⁻³5⁵ = 6075.6294352094865 [ft] English
julia> meridianmile(Nautical) # nm
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹5⁷ = 0.9985540395(10) [nm] Nautical
MeasureSystems.admiraltymile
— Constant
admiraltymile(U::UnitSystem) = length(𝟐^6*𝟓*𝟏𝟗,U,English)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⁷5⋅19 = 4.7990146910(15) × 10¹⁵) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Historic nautical mile as defined by the Clarke authalic radius (m or ft).
julia> admiraltymile(Metric) # m
ft⋅2⁶5⋅19 = 1853.1840000000002 [m] Metric
julia> admiraltymile(English) # ft
2⁶5⋅19 = 6080.0 [ft] English
julia> admiraltymile(Nautical) # nm
g₀¹ᐟ²ft⋅GME⁻¹ᐟ²τ⁻¹2¹¹3³5³19 = 0.9992723594(10) [nm] Nautical
MeasureSystems.nauticalmile
— Constant
nauticalmile(U::UnitSystem) = greatcircle(U)/𝟐^5/𝟑^3/𝟓^2
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2⁻⁴3⁻³5⁻² = 4.8025091919(50) × 10¹⁵) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Standard nauticalmile
as defined by
earthradius
(m or ft).
julia> nauticalmile(Metric) # m
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁵3⁻³5⁻² = 1854.5334339(19) [m] Metric
julia> nauticalmile(Meridian) # em
2⁴3⁻³5⁵ = 1851.8518518518517 [em] Meridian
julia> nauticalmile(English) # ft
g₀⁻¹ᐟ²ft⁻¹GME¹ᐟ²τ⋅2⁻⁵3⁻³5⁻² = 6084.4272766(61) [ft] English
MeasureSystems.lunardistance
— Constant
lunardistance(U::UnitSystem) = length(𝟏,U,IAUE)
length : [L], [L], [L], [L], [L]
L⋅14237 [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Standard distance between the Earth and the Moon (m or ft).
julia> lunardistance(Metric) # m
2³3³5³⋅14237 = 3.84399×10⁸ [m] Metric
julia> lunardistance(Nautical) # nm
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁸3⁶5⁵⋅14237 = 207275.31409(21) [nm] Nautical
julia> lunardistance(Metric)/lightspeed(Metric) # s
𝘤⁻¹2³3³5³⋅14237 = 1.2822170463007445 [s] Metric
MeasureSystems.astronomicalunit
— Constant
astronomicalunit(U::UnitSystem) = length(𝟏,U,IAU)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²au⋅τ⋅2 = 3.8739940515(12) × 10²³) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Standard astronomical unit from the International Astronomical Union (m or ft).
julia> astronomicalunit(Metric) # m
au = 1.495978707000(30) × 10¹¹ [m] Metric
julia> astronomicalunit(English) # ft
au⋅ft⁻¹ = 4.908066624016(98) × 10¹¹ [ft] English
julia> astronomicalunit(Metric)/lightspeed(Metric) # s
𝘤⁻¹au = 499.004783836(10) [s] Metric
MeasureSystems.jupiterdistance
— Constant
jupiterdistance(U::UnitSystem) = length(𝟏,U,IAUJ)
length : [L], [L], [L], [L], [L]
L⋅259493 [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Standard distance between the Sun and the planet Jupiter (m or ft).
julia> jupiterdistance(Metric) # m
2⁶3⋅5⁶⋅259493 = 7.78479×10¹¹ [m] Metric
julia> jupiterdistance(IAU) # au
au⁻¹2⁶3⋅5⁶⋅259493 = 5.20381069836(10) [au] IAU☉
julia> jupiterdistance(Metric)/lightspeed(Metric) # s
𝘤⁻¹2⁶3⋅5⁶⋅259493 = 2596.726432657622 [s] Metric
MeasureSystems.lightyear
— Constant
lightyear(U::UnitSystem) = year(U)*lightspeed(U)
length : [L], [L], [L], [L], [L]
L⋅(𝘤⋅R∞⋅α⁻²aⱼ⋅τ⋅2⁸3³5² = 2.44995556434(75) × 10²⁸) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Unit of length
defined by distance
traveled by light in 1 year
unit.
julia> lightyear(Metric) # m
𝘤⋅aⱼ⋅2⁷3³5² = 9.4607304725808×10¹⁵ [m] Metric
julia> lightyear(English) # ft
𝘤⋅aⱼ⋅ft⁻¹2⁷3³5² = 3.103914197040945×10¹⁶ [ft] English
julia> lightyear(IAU) # au
𝘤⋅aⱼ⋅au⁻¹2⁷3³5² = 63241.0770843(13) [au] IAU☉
MeasureSystems.parsec
— Constant
parsec(U::UnitSystem) = astronomicalunit(U)*𝟐^2*𝟑^4*𝟓^3/τ
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²au⋅2⁸3⁴5³ = 7.9906863243(25) × 10²⁸) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Unit of length
defined at which 1
astronomicalunit
subtends an angle of 1
arcsecond.
julia> parsec(Metric) # m
au⋅τ⁻¹2⁷3⁴5³ = 3.085677581491(62) × 10¹⁶ [m] Metric
julia> parsec(English) # ft
au⋅ft⁻¹τ⁻¹2⁷3⁴5³ = 1.012361411250(20) × 10¹⁷ [ft] English
julia> parsec(IAU) # au
τ⁻¹2⁷3⁴5³ = 206264.80624709636 [au] IAU☉
Speed Units
MeasureSystems.bubnoff
— Constant
bubnoff(U::UnitSystem) = meter(U)/year(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹aⱼ⁻¹2⁻⁷3⁻³5⁻² = 1.0570008340246154×10⁻¹⁶) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Reference unit of erosion speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> bubnoff(CGS) # cm⋅s⁻¹
aⱼ⁻¹2⁻⁵3⁻³ = 3.1688087814028946×10⁻⁶ [cm⋅s⁻¹] Gauss
julia> bubnoff(English) # ft⋅s⁻¹
aⱼ⁻¹ft⁻¹2⁻⁷3⁻³5⁻² = 1.0396354269694536×10⁻⁷ [ft⋅s⁻¹] English
MeasureSystems.fpm
— Constant
fpm(U::UnitSystem) = feet(U)/minute(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⁻²3⁻¹5⁻¹ = 1.6945056036066124×10⁻¹¹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Feet per minute unit of speed
(m⋅s⁻¹
or ft⋅s⁻¹).
julia> fpm(CGS) # cm⋅s⁻¹
ft⋅3⁻¹5 = 0.508 [cm⋅s⁻¹] Gauss
julia> fpm(IPS) # in⋅s⁻¹
5⁻¹ = 0.2 [in⋅s⁻¹] IPS
julia> fpm(English) # ft⋅s⁻¹
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [ft⋅s⁻¹] English
MeasureSystems.ips
— Constant
ips(U::UnitSystem) = inch(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⁻²3⁻¹ = 8.472528018033061×10⁻¹¹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Inch per second unit of speed
(m⋅s⁻¹
or ft⋅s⁻¹).
julia> ips(CGS) # cm⋅s⁻¹
ft⋅3⁻¹5² = 2.5399999999999996 [cm⋅s⁻¹] Gauss
julia> ips(English) # ft⋅s⁻¹
2⁻²3⁻¹ = 0.08333333333333333 [ft⋅s⁻¹] English
MeasureSystems.kmh
— Constant
kmh(U::UnitSystem) = kilo(U)*meter(U)/hour(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹2⁻¹3⁻²5 = 9.265669311059779×10⁻¹⁰) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Kilometers per hour unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> kmh(Metric) # m⋅s⁻¹
2⁻¹3⁻²5 = 0.2777777777777778 [m⋅s⁻¹] Metric
julia> kmh(MPH) # mi⋅h⁻¹
ft⁻¹2⁻²3⁻¹5²11⁻¹ = 0.6213711922373338 [mi⋅h⁻¹] MPH
julia> kmh(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁸3³5⁵ = 0.53921918134(54) [nm⋅h⁻¹] Nautical
MeasureSystems.fps
— Constant
fps(U::UnitSystem) = feet(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft = 1.0167033621639674×10⁻⁹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Feet per second unit of speed
(m⋅s⁻¹
or ft⋅s⁻¹).
julia> fps(Metric) # m⋅s⁻¹
ft = 0.3048 [m⋅s⁻¹] Metric
julia> fps(KKH) # km⋅h⁻¹
ft⋅2⋅3²5⁻¹ = 1.09728 [km⋅h⁻¹] KKH
julia> fps(MPH) # mi⋅h⁻¹
2⁻¹3⋅5⋅11⁻¹ = 0.6818181818181819 [mi⋅h⁻¹] MPH
MeasureSystems.mph
— Constant
mph(U::UnitSystem) = mile(U)/hour(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⋅3⁻¹5⁻¹11 = 1.4911649311738188×10⁻⁹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Miles per hour unit of speed
(m⋅s⁻¹
or ft⋅s⁻¹).
julia> mph(Metric) # m⋅s⁻¹
ft⋅2⋅3⁻¹5⁻¹11 = 0.44704 [m⋅s⁻¹] Metric
julia> mph(KKH) # km⋅h⁻¹
ft⋅2²3⋅5⁻²11 = 1.6093440000000003 [km⋅h⁻¹] KKH
julia> mph(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²ft⋅GME⁻¹ᐟ²τ⁻¹2¹⁰3⁴5³11 = 0.86778915418(87) [nm⋅h⁻¹] Nautical
MeasureSystems.knot
— Constant
knot(U::UnitSystem) = nauticalmile(U)/hour(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁹3⁻⁵5⁻⁴ = 1.7183493525(17) × 10⁻⁹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Nautical miles per hour unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> knot(Metric) # m⋅s⁻¹
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁹3⁻⁵5⁻⁴ = 0.51514817608(52) [m⋅s⁻¹] Metric
julia> knot(KKH) # km⋅h⁻¹
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁸3⁻³5⁻⁵ = 1.8545334339(19) [km⋅h⁻¹] KKH
julia> knot(MPH) # mi⋅h⁻¹
g₀⁻¹ᐟ²ft⁻¹GME¹ᐟ²τ⋅2⁻¹⁰3⁻⁴5⁻³11⁻¹ = 1.1523536509(12) [mi⋅h⁻¹] MPH
MeasureSystems.ms
— Constant
ms(U::UnitSystem) = meter(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ = 3.3356409519815204×10⁻⁹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Meters per second unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> ms(KKH) # km⋅h⁻¹
2⋅3²5⁻¹ = 3.6 [km⋅h⁻¹] KKH
julia> ms(MPH) # mi⋅h⁻¹
ft⁻¹2⁻¹3⋅5⋅11⁻¹ = 2.236936292054402 [mi⋅h⁻¹] MPH
julia> ms(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹3⁵5⁴ = 1.9411890528(19) [nm⋅h⁻¹] Nautical
MeasureSystems.mps
— Constant
mps(U::UnitSystem) = mile(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⁵3⋅5⋅11 = 5.368193752225748×10⁻⁶) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Miles per second unit of speed
(m⋅s⁻¹
or ft⋅s⁻¹).
julia> mps(KKH) # km⋅h⁻¹
ft⋅2⁶3³11 = 5793.638400000001 [km⋅h⁻¹] KKH
julia> mps(MPH) # mi⋅h⁻¹
2⁴3²5² = 3600.0 [mi⋅h⁻¹] MPH
julia> mps(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²ft⋅GME⁻¹ᐟ²τ⁻¹2¹⁴3⁶5⁵11 = 3124.0409550(31) [nm⋅h⁻¹] Nautical
Area Units
MeasureSystems.barn
— Constant
barn(U::UnitSystem) = area((𝟐*𝟓)^-28,U,Metric)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴τ²2⁻²⁶5⁻²⁸ = 0.00067060544436(41)) [ħ⁻⁵𝘤¹¹μ₀⋅mₑ⁸Kcd²ϕ⁻⁵λ⋅g₀⁻⁶] Unified
Unit of area
defined by
100
square femto-meters (m² or ft²).
julia> barn(Metric) # m²
2⁻²⁸5⁻²⁸ = 1.0×10⁻²⁸ [m²] Metric
julia> barn(CGS) # cm²
2⁻²⁴5⁻²⁴ = 1.0×10⁻²⁴ [cm²] Gauss
julia> barn(English) # ft²
ft⁻²2⁻²⁸5⁻²⁸ = 1.076391041670972×10⁻²⁷ [ft²] English
MeasureSystems.hectare
— Constant
hectare(U::UnitSystem) = area(hecto^2,U,Metric)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴τ²2⁶5⁴ = 6.7060544436(41) × 10²⁸) [ħ⁻⁵𝘤¹¹μ₀⋅mₑ⁸Kcd²ϕ⁻⁵λ⋅g₀⁻⁶] Unified
Metric unit of land area
defined by
100
square meters (m² or ft²).
julia> hectare(Metric) # m²
2⁴5⁴ = 10000.0 [m²] Metric
julia> hectare(English) # ft²
ft⁻²2⁴5⁴ = 107639.1041670972 [ft²] English
julia> hectare(Survey) # ftUS²
ftUS⁻²2⁴5⁴ = 107638.67361111114 [ft²] Survey
MeasureSystems.acre
— Constant
acre(U::UnitSystem) = area(𝟐^4*𝟓^4,U,Metric)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴ft²τ²2⁵3²5⋅11² = 2.7138439494(17) × 10²⁸) [ħ⁻⁵𝘤¹¹μ₀⋅mₑ⁸Kcd²ϕ⁻⁵λ⋅g₀⁻⁶] Unified
English unit of land area
(m² or
ft²).
julia> acre(Metric) # m²
ft²2³3²5⋅11² = 4046.8564224 [m²] Metric
julia> acre(English) # ft²
2³3²5⋅11² = 43560.0 [ft²] English
julia> acre(Survey) # ftUS²
ft²ftUS⁻²2³3²5⋅11² = 43559.82576017426 [ft²] Survey
MeasureSystems.surveyacre
— Constant
surveyacre(U::UnitSystem) = area(𝟐^3*𝟑^2*𝟓*𝟏𝟏^2,U,Survey)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴ftUS²τ²2⁵3²5⋅11² = 2.7138548048(17) × 10²⁸) [ħ⁻⁵𝘤¹¹μ₀⋅mₑ⁸Kcd²ϕ⁻⁵λ⋅g₀⁻⁶] Unified
Survey unit of land area
(m² or
ft²).
julia> surveyacre(Metric) # m²
ftUS²2³3²5⋅11² = 4046.8726098742513 [m²] Metric
julia> surveyacre(English) # ft²
ft⁻²ftUS²2³3²5⋅11² = 43560.174240522705 [ft²] English
julia> surveyacre(Survey) # ftUS²
2³3²5⋅11² = 43560.0 [ft²] Survey
Volume Units
MeasureSystems.liter
— Constant
liter(U::UnitSystem) = volume(𝟏𝟎^-3,U,Metric)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶τ³5⁻³ = 1.7366032619(16) × 10³⁴) [ħ⁻¹⁵ᐟ²𝘤³³ᐟ²μ₀³ᐟ²mₑ¹²Kcd³ϕ⁻¹⁵ᐟ²λ³ᐟ²g₀⁻⁹] Unified
Unit of volume
derived from 1 cubic
decimeter (m³ or ft³).
julia> liter(Metric) # m³
2⁻³5⁻³ = 0.001 [m³] Metric
julia> liter(CGS) # cm³
2³5³ = 1000.0 [mL] Gauss
julia> liter(IPS) # in³
ft⁻³2³3³5⁻³ = 61.02374409473227 [in³] IPS
MeasureSystems.gallon
— Constant
gallon(U::UnitSystem) = volume(𝟕*𝟏𝟏/𝟐^2,U,English)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻³3⁻²7⋅11 = 6.5737584518(60) × 10³⁴) [ħ⁻¹⁵ᐟ²𝘤³³ᐟ²μ₀³ᐟ²mₑ¹²Kcd³ϕ⁻¹⁵ᐟ²λ³ᐟ²g₀⁻⁹] Unified
Unit of volume
derived from the US
liquid gallon
in cubic inches (m³ or
ft³).
julia> gallon(Metric) # m³
ft³2⁻⁶3⁻²7⋅11 = 0.0037854117839999997 [m³] Metric
julia> gallon(CGS) # cm³
ft³3⁻²5⁶7⋅11 = 3785.411784000001 [mL] Gauss
julia> gallon(IPS) # in³
3⋅7⋅11 = 231.0 [in³] IPS
MeasureSystems.quart
— Constant
quart(U::UnitSystem) = gallon(U)/𝟐^2
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻⁵3⁻²7⋅11 = 1.6434396130(15) × 10³⁴) [ħ⁻¹⁵ᐟ²𝘤³³ᐟ²μ₀³ᐟ²mₑ¹²Kcd³ϕ⁻¹⁵ᐟ²λ³ᐟ²g₀⁻⁹] Unified
English unit of volume
(m³ or
ft³).
julia> quart(Metric) # m³
ft³2⁻⁸3⁻²7⋅11 = 0.0009463529459999999 [m³] Metric
julia> quart(CGS) # cm³
ft³2⁻²3⁻²5⁶7⋅11 = 946.3529460000002 [mL] Gauss
julia> quart(IPS) # in³
2⁻²3⋅7⋅11 = 57.75 [in³] IPS
MeasureSystems.pint
— Constant
pint(U::UnitSystem) = quart(U)/𝟐
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻⁶3⁻²7⋅11 = 8.2171980648(76) × 10³³) [ħ⁻¹⁵ᐟ²𝘤³³ᐟ²μ₀³ᐟ²mₑ¹²Kcd³ϕ⁻¹⁵ᐟ²λ³ᐟ²g₀⁻⁹] Unified
English unit of volume
(m³ or
ft³).
julia> pint(Metric) # m³
ft³2⁻⁹3⁻²7⋅11 = 0.00047317647299999996 [m³] Metric
julia> pint(CGS) # cm³
ft³2⁻³3⁻²5⁶7⋅11 = 473.1764730000001 [mL] Gauss
julia> pint(IPS) # in³
2⁻³3⋅7⋅11 = 28.875 [in³] IPS
MeasureSystems.cup
— Constant
cup(U::UnitSystem) = pint(U)/𝟐
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻⁷3⁻²7⋅11 = 4.1085990324(38) × 10³³) [ħ⁻¹⁵ᐟ²𝘤³³ᐟ²μ₀³ᐟ²mₑ¹²Kcd³ϕ⁻¹⁵ᐟ²λ³ᐟ²g₀⁻⁹] Unified
English unit of volume
(m³ or
ft³).
julia> cup(Metric) # m³
ft³2⁻¹⁰3⁻²7⋅11 = 0.00023658823649999998 [m³] Metric
julia> cup(CGS) # cm³
ft³2⁻⁴3⁻²5⁶7⋅11 = 236.58823650000005 [mL] Gauss
julia> cup(IPS) # in³
2⁻⁴3⋅7⋅11 = 14.4375 [in³] IPS
MeasureSystems.fluidounce
— Constant
fluidounce(U::UnitSystem) = cup(U)/𝟐^3
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻¹⁰3⁻²7⋅11 = 5.1357487905(47) × 10³²) [ħ⁻¹⁵ᐟ²𝘤³³ᐟ²μ₀³ᐟ²mₑ¹²Kcd³ϕ⁻¹⁵ᐟ²λ³ᐟ²g₀⁻⁹] Unified
English unit of volume
(m³ or
ft³).
julia> fluidounce(Metric) # m³
ft³2⁻¹³3⁻²7⋅11 = 2.9573529562499998×10⁻⁵ [m³] Metric
julia> fluidounce(CGS) # cm³
ft³2⁻⁷3⁻²5⁶7⋅11 = 29.573529562500006 [mL] Gauss
julia> fluidounce(IPS) # in³
2⁻⁷3⋅7⋅11 = 1.8046875 [in³] IPS
MeasureSystems.teaspoon
— Constant
teaspoon(U::UnitSystem) = 𝟓*milli*liter(U)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶τ³2⁻³5⁻⁵ = 8.6830163097(80) × 10³¹) [ħ⁻¹⁵ᐟ²𝘤³³ᐟ²μ₀³ᐟ²mₑ¹²Kcd³ϕ⁻¹⁵ᐟ²λ³ᐟ²g₀⁻⁹] Unified
Measuring teaspoon
unit of
volume
(m³ or ft³).
julia> teaspoon(Metric) # m³
2⁻⁶5⁻⁵ = 5.0×10⁻⁶ [m³] Metric
julia> teaspoon(CGS) # cm³
5 = 5.0 [mL] Gauss
julia> teaspoon(IPS) # in³
ft⁻³3³5⁻⁵ = 0.3051187204736614 [in³] IPS
MeasureSystems.tablespoon
— Constant
tablespoon(U::UnitSystem) = 𝟑*teaspoon(U)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶τ³2⁻³3⋅5⁻⁵ = 2.6049048929(24) × 10³²) [ħ⁻¹⁵ᐟ²𝘤³³ᐟ²μ₀³ᐟ²mₑ¹²Kcd³ϕ⁻¹⁵ᐟ²λ³ᐟ²g₀⁻⁹] Unified
Measuring tablespoon
unit of
volume
(m³ or ft³).
julia> tablespoon(Metric) # m³
2⁻⁶3⋅5⁻⁵ = 1.5000000000000002×10⁻⁵ [m³] Metric
julia> tablespoon(CGS) # cm³
3⋅5 = 15.0 [mL] Gauss
julia> tablespoon(IPS) # in³
ft⁻³3⁴5⁻⁵ = 0.9153561614209842 [in³] IPS
Mass Units
MeasureSystems.gram
— Constant
gram(U::UnitSystem) = mass(𝟏,U,Gauss)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2⁻⁴5⁻³ = 1.09776910575(34) × 10²⁷) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Metric gram
unit of mass
(kg or lb).
julia> gram(Metric) # kg
2⁻³5⁻³ = 0.001 [kg] Metric
julia> gram(CGS) # g
𝟏 = 1.0 [g] Gauss
julia> gram(English) # lb
lb⁻¹2⁻³5⁻³ = 0.002204622621848776 [lbm] English
julia> gram(British) # slug
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [slug] British
julia> gram(Gravitational) # hyl
g₀⁻¹2⁻³5⁻³ = 0.00010197162129779284 [hyl] Gravitational
MeasureSystems.earthgram
— Constant
earthgram(U::UnitSystem) = mass(milli,U,Meridian)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⁻³ᐟ²GME³ᐟ²τ³2⁻³¹5⁻²⁴ = 1.1025449025(33) × 10²⁷) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Meridian gram
unit of
mass
based on earthmeter
(kg or lb).
julia> earthgram(Meridian) # keg
2⁻³5⁻³ = 0.001 [keg] Meridian
julia> earthgram(CGS) # g
g₀⁻³ᐟ²GME³ᐟ²τ³2⁻²⁷5⁻²¹ = 1.0043504565(30) [g] Gauss
julia> earthgram(English) # lb
g₀⁻³ᐟ²lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 0.0022142137367(67) [lbm] English
julia> earthgram(British) # slug
g₀⁻⁵ᐟ²ft⋅lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 6.881986682(21) × 10⁻⁵ [slug] British
julia> earthgram(Gravitational) # hyl
g₀⁻⁵ᐟ²GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 0.00010241524440(31) [hyl] Gravitational
MeasureSystems.kilogram
— Constant
kilogram(U::UnitSystem) = mass(𝟏,U,Metric)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2⁻¹ = 1.09776910575(34) × 10³⁰) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Metric kilogram
unit of
mass
(kg or lb).
julia> kilogram(Metric) # kg
𝟏 = 1.0 [kg] Metric
julia> kilogram(CGS) # g
2³5³ = 1000.0 [g] Gauss
julia> kilogram(English) # lb
lb⁻¹ = 2.2046226218487757 [lbm] English
julia> kilogram(British) # slug
g₀⁻¹ft⋅lb⁻¹ = 0.06852176585679176 [slug] British
julia> kilogram(Gravitational) # hyl
g₀⁻¹ = 0.10197162129779283 [hyl] Gravitational
MeasureSystems.tonne
— Constant
tonne(U::UnitSystem) = mass(𝟏,U,MTS)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2²5³ = 1.09776910575(34) × 10³³) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Metric tonne
unit of
mass
(kg or lb).
julia> tonne(Metric) # kg
2³5³ = 1000.0 [kg] Metric
julia> tonne(MTS) # t
𝟏 = 1.0 [t] MTS
julia> tonne(English) # lb
lb⁻¹2³5³ = 2204.6226218487755 [lbm] English
julia> tonne(British) # slug
g₀⁻¹ft⋅lb⁻¹2³5³ = 68.52176585679176 [slug] British
julia> tonne(Gravitational) # hyl
g₀⁻¹2³5³ = 101.97162129779284 [hyl] Gravitational
MeasureSystems.ton
— Constant
ton(U::UnitSystem) = mass(𝟐*kilo,U,English)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2³5³ = 9.9587938078(31) × 10³²) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
English ton
unit of mass
(kg or lb).
julia> ton(Metric) # kg
lb⋅2⁴5³ = 907.18474 [kg] Metric
julia> ton(MTS) # t
lb⋅2 = 0.90718474 [t] MTS
julia> ton(English) # lb
2⁴5³ = 2000.0 [lbm] English
julia> ton(British) # slug
g₀⁻¹ft⋅2⁴5³ = 62.16190034313451 [slug] British
julia> ton(Gravitational) # hyl
g₀⁻¹lb⋅2⁴5³ = 92.50709875441665 [hyl] Gravitational
MeasureSystems.pound
— Constant
pound(U::UnitSystem) = mass(𝟏,U,English)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻¹ = 4.9793969039(15) × 10²⁹) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
English pound
unit of
mass
(kg or lb).
julia> pound(Metric) # kg
lb = 0.45359237 [kg] Metric
julia> pound(CGS) # g
lb⋅2³5³ = 453.59237 [g] Gauss
julia> pound(English) # lb
𝟏 = 1.0 [lbm] English
julia> pound(British) # slug
g₀⁻¹ft = 0.031080950171567256 [slug] British
julia> pound(Gravitational) # hyl
g₀⁻¹lb = 0.046253549377208325 [hyl] Gravitational
MeasureSystems.ounce
— Constant
ounce(U::UnitSystem) = pound(U)/𝟐^4
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻⁵ = 3.11212306494(95) × 10²⁸) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
English ounce
unit of
mass
(kg or lb).
julia> ounce(Metric) # kg
lb⋅2⁻⁴ = 0.028349523125 [kg] Metric
julia> ounce(CGS) # g
lb⋅2⁻¹5³ = 28.349523125 [g] Gauss
julia> ounce(English) # lb
2⁻⁴ = 0.0625 [lbm] English
julia> ounce(British) # slug
g₀⁻¹ft⋅2⁻⁴ = 0.0019425593857229535 [slug] British
julia> ounce(Gravitational) # hyl
g₀⁻¹lb⋅2⁻⁴ = 0.0028908468360755203 [hyl] Gravitational
MeasureSystems.grain
— Constant
grain(U::UnitSystem) = milli(U)*pound(U)/𝟕
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻⁴5⁻³7⁻¹ = 7.1134241484(22) × 10²⁵) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Ideal grain
seed of cereal, unit of
mass
(kg or lb).
julia> grain(Metric) # kg
lb⋅2⁻³5⁻³7⁻¹ = 6.479891×10⁻⁵ [kg] Metric
julia> grain(CGS) # g
lb⋅7⁻¹ = 0.06479891 [g] Gauss
julia> grain(English) # lb
2⁻³5⁻³7⁻¹ = 0.00014285714285714284 [lbm] English
julia> grain(QCD) # mₚ
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹lb⋅2⁻⁴5⁻³7⁻¹ = 3.8740918723(12) × 10²² [mₚ] QCD
MeasureSystems.slug
— Constant
slug(U::UnitSystem) = mass(𝟏,U,British)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⁻¹ = 1.60207357768(49) × 10³¹) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
British gravitational slug
unit of
mass
(kg or lb).
julia> slug(Metric) # kg
g₀⋅ft⁻¹lb = 14.593902937206364 [kg] Metric
julia> slug(CGS) # g
g₀⋅ft⁻¹lb⋅2³5³ = 14593.902937206363 [g] Gauss
julia> slug(English) # lb
g₀⋅ft⁻¹ = 32.17404855643044 [lbm] English
julia> slug(British) # slug
𝟏 = 1.0 [slug] British
julia> slug(Gravitational) # hyl
ft⁻¹lb = 1.4881639435695537 [hyl] Gravitational
MeasureSystems.slinch
— Constant
slinch(U::UnitSystem) = mass(𝟏,U,IPS)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⋅3 = 1.92248829321(59) × 10³²) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
British gravitational slinch
unit of
mass
(kg or lb).
julia> slinch(Metric) # kg
g₀⋅ft⁻¹lb⋅2²3 = 175.12683524647636 [kg] Metric
julia> slinch(CGS) # g
g₀⋅ft⁻¹lb⋅2⁵3⋅5³ = 175126.83524647637 [g] Gauss
julia> slinch(English) # lb
g₀⋅ft⁻¹2²3 = 386.0885826771653 [lbm] English
julia> slinch(British) # slug
2²3 = 12.0 [slug] British
julia> slinch(Gravitational) # hyl
ft⁻¹lb⋅2²3 = 17.857967322834646 [hyl] Gravitational
MeasureSystems.hyl
— Constant
hyl(U::UnitSystem) = mass(𝟏,U,Gravitational)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅2⁻¹ = 1.07654374009(33) × 10³¹) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Gravitational Metric hyl
unit of
mass
(kg or lb).
julia> hyl(Metric) # kg
g₀ = 9.80665 [kg] Metric
julia> hyl(CGS) # g
g₀⋅2³5³ = 9806.65 [g] Gauss
julia> hyl(English) # lb
g₀⋅lb⁻¹ = 21.619962434553294 [lbm] English
julia> hyl(British) # slug
ft⋅lb⁻¹ = 0.6719689751395068 [slug] British
julia> hyl(Gravitational) # hyl
𝟏 = 1.0 [hyl] Gravitational
Force Units
MeasureSystems.dyne
— Constant
dyne(U::UnitSystem) = force(𝟏,U,Gauss)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴τ⁻¹2⁻⁷5⁻⁵ = 4.7166761794(29) × 10⁻⁵) [ħ⁵𝘤⁻⁸μ₀⁻¹mₑ⁻⁶Kcd⁻¹ϕ⁵λ⁻¹g₀⁵] Unified
Historical dyne
unit of
force
(N or lb).
julia> dyne(Metric) # N
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [N] Metric
julia> dyne(CGS) # dyn
𝟏 = 1.0 [dyn] Gauss
julia> dyne(English) # lb
g₀⁻¹lb⁻¹2⁻⁵5⁻⁵ = 2.248089430997105×10⁻⁶ [lbf] English
julia> dyne(FPS) # pdl
ft⁻¹lb⁻¹2⁻⁵5⁻⁵ = 7.233013851209893×10⁻⁵ [pdl] FPS
julia> dyne(Engineering) # kp
g₀⁻¹2⁻⁵5⁻⁵ = 1.0197162129779284×10⁻⁶ [kgf] Engineering
MeasureSystems.newton
— Constant
newton(U::UnitSystem) = force(𝟏,U,Metric)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴τ⁻¹2⁻² = 4.7166761794(29)) [ħ⁵𝘤⁻⁸μ₀⁻¹mₑ⁻⁶Kcd⁻¹ϕ⁵λ⁻¹g₀⁵] Unified
Metric newton
unit of
force
(N or lb).
julia> newton(Metric) # N
𝟏 = 1.0 [N] Metric
julia> newton(CGS) # dyn
2⁵5⁵ = 100000.0 [dyn] Gauss
julia> newton(English) # lb
g₀⁻¹lb⁻¹ = 0.22480894309971047 [lbf] English
julia> newton(FPS) # pdl
ft⁻¹lb⁻¹ = 7.233013851209893 [pdl] FPS
julia> newton(Engineering) # kp
g₀⁻¹ = 0.10197162129779283 [kgf] Engineering
MeasureSystems.poundal
— Constant
poundal(U::UnitSystem) = force(𝟏,U,FPS)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴ft⋅lb⋅τ⁻¹2⁻² = 0.65210384999(40)) [ħ⁵𝘤⁻⁸μ₀⁻¹mₑ⁻⁶Kcd⁻¹ϕ⁵λ⁻¹g₀⁵] Unified
Absolute English poundal
unit of
force
(N or lb).
julia> poundal(Metric) # N
ft⋅lb = 0.13825495437600002 [N] Metric
julia> poundal(CGS) # dyn
ft⋅lb⋅2⁵5⁵ = 13825.495437600002 [dyn] Gauss
julia> poundal(English) # lb
g₀⁻¹ft = 0.031080950171567256 [lbf] English
julia> poundal(FPS) # pdl
𝟏 = 1.0 [pdl] FPS
julia> poundal(Engineering) # kp
g₀⁻¹ft⋅lb = 0.014098081850173099 [kgf] Engineering
MeasureSystems.poundforce
— Constant
poundforce(U::UnitSystem) = force(𝟏,U,English)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴g₀⋅lb⋅τ⁻¹2⁻² = 20.9808209330(13)) [ħ⁵𝘤⁻⁸μ₀⁻¹mₑ⁻⁶Kcd⁻¹ϕ⁵λ⁻¹g₀⁵] Unified
English poundforce
unit of
force
used in engineering systems (N or
lb).
julia> poundforce(Metric) # N
g₀⋅lb = 4.4482216152605 [N] Metric
julia> poundforce(CGS) # dyn
g₀⋅lb⋅2⁵5⁵ = 444822.16152604995 [dyn] Gauss
julia> poundforce(English) # lb
𝟏 = 1.0 [lbf] English
julia> poundforce(FPS) # pdl
g₀⋅ft⁻¹ = 32.17404855643044 [pdl] FPS
julia> poundforce(Engineering) # kp
lb = 0.45359237 [kgf] Engineering
MeasureSystems.kilopond
— Constant
kilopond(U::UnitSystem) = force(𝟏,U,Engineering)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴g₀⋅τ⁻¹2⁻² = 46.254792454(28)) [ħ⁵𝘤⁻⁸μ₀⁻¹mₑ⁻⁶Kcd⁻¹ϕ⁵λ⁻¹g₀⁵] Unified
Gravitational kilopond
unit of
force
used in engineering systems (N or
lb).
julia> kilopond(Metric) # N
g₀ = 9.80665 [N] Metric
julia> kilopond(CGS) # dyn
g₀⋅2⁵5⁵ = 980665.0 [dyn] Gauss
julia> kilopond(English) # lb
lb⁻¹ = 2.2046226218487757 [lbf] English
julia> kilopond(FPS) # pdl
g₀⋅ft⁻¹lb⁻¹ = 70.9316352839675 [pdl] FPS
julia> kilopond(Engineering) # kp
𝟏 = 1.0 [kgf] Engineering
Pressure Units
MeasureSystems.psi
— Constant
psi(U::UnitSystem) = pressure(𝟏,U,IPS)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸g₀⋅ft⁻²lb⋅τ⁻³3² = 4.8493995628(59) × 10⁻²¹) [ħ¹⁰𝘤⁻¹⁹μ₀⁻²mₑ⁻¹⁴Kcd⁻³ϕ¹⁰λ⁻²g₀¹¹] Unified
English unit of pressure
(Pa or
lb⋅ft⁻²).
julia> psi(Metric) # Pa
g₀⋅ft⁻²lb⋅2⁴3² = 6894.75729316836 [Pa] Metric
julia> psi(English) # lb⋅ft⁻²
2⁴3² = 144.0 [lbf⋅ft⁻²] English
julia> psi(IPS) # lb⋅in⁻²
𝟏 = 1.0 [lb⋅in⁻²] IPS
MeasureSystems.pascal
— Constant
pascal(U::UnitSystem) = pressure(𝟏,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 7.0334594194(86) × 10⁻²⁵) [ħ¹⁰𝘤⁻¹⁹μ₀⁻²mₑ⁻¹⁴Kcd⁻³ϕ¹⁰λ⁻²g₀¹¹] Unified
Metric unit of pressure
(Pa or
lb⋅ft⁻²).
julia> pascal(Metric) # Pa
𝟏 = 1.0 [Pa] Metric
julia> pascal(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹ = 0.02088543423315013 [lbf⋅ft⁻²] English
julia> pascal(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹2⁻⁴3⁻² = 0.0001450377377302092 [lb⋅in⁻²] IPS
MeasureSystems.barye
— Constant
barye(U::UnitSystem) = pressure(𝟏,U,Gauss)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁵5⁻¹ = 7.0334594194(86) × 10⁻²⁶) [ħ¹⁰𝘤⁻¹⁹μ₀⁻²mₑ⁻¹⁴Kcd⁻³ϕ¹⁰λ⁻²g₀¹¹] Unified
Historical unit of pressure
(Pa or
lb⋅ft⁻²).
julia> barye(Metric) # Pa
2⁻¹5⁻¹ = 0.1 [Pa] Metric
julia> barye(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹2⁻¹5⁻¹ = 0.002088543423315013 [lbf⋅ft⁻²] English
julia> barye(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹2⁻⁵3⁻²5⁻¹ = 1.4503773773020924×10⁻⁵ [lb⋅in⁻²] IPS
MeasureSystems.bar
— Constant
bar(U::UnitSystem) = pressure(hecto*kilo,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸τ⁻³2⋅5⁵ = 7.0334594194(86) × 10⁻²⁰) [ħ¹⁰𝘤⁻¹⁹μ₀⁻²mₑ⁻¹⁴Kcd⁻³ϕ¹⁰λ⁻²g₀¹¹] Unified
Reference unit of pressure
(Pa or
lb⋅ft⁻²).
julia> bar(Metric) # Pa
2⁵5⁵ = 100000.0 [Pa] Metric
julia> bar(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹2⁵5⁵ = 2088.543423315013 [lbf⋅ft⁻²] English
julia> bar(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹2⋅3⁻²5⁵ = 14.503773773020923 [lb⋅in⁻²] IPS
MeasureSystems.technicalatmosphere
— Constant
technicalatmosphere(U::UnitSystem) = kilopond(U)/(centi*meter(U))^2
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸g₀⋅τ⁻³5⁴ = 6.8974674816(85) × 10⁻²⁰) [ħ¹⁰𝘤⁻¹⁹μ₀⁻²mₑ⁻¹⁴Kcd⁻³ϕ¹⁰λ⁻²g₀¹¹] Unified
Gravitational Metric unit of pressure
(Pa or lb⋅ft⁻²).
julia> technicalatmosphere(Metric) # Pa
g₀⋅2⁴5⁴ = 98066.5 [Pa] Metric
julia> technicalatmosphere(English) # lb⋅ft⁻²
ft²lb⁻¹2⁴5⁴ = 2048.161436225217 [lbf⋅ft⁻²] English
julia> technicalatmosphere(IPS) # lb⋅in⁻²
ft²lb⁻¹3⁻²5⁴ = 14.223343307119563 [lb⋅in⁻²] IPS
MeasureSystems.atmosphere
— Constant
atmosphere(U::UnitSystem) = pressure(atm = 101325.0,U)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸atm⋅τ⁻³2⁻⁴ = 7.1266527568(87) × 10⁻²⁰) [ħ¹⁰𝘤⁻¹⁹μ₀⁻²mₑ⁻¹⁴Kcd⁻³ϕ¹⁰λ⁻²g₀¹¹] Unified
Standard pressure
reference level of
one atmosphere atm
(Pa or lb⋅ft⁻²).
julia> atmosphere(Metric) # Pa
atm = 101325.0 [Pa] Metric
julia> atmosphere(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹atm = 2116.2166236739367 [lbf⋅ft⁻²] English
julia> atmosphere(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹atm⋅2⁻⁴3⁻² = 14.695948775513449 [lb⋅in⁻²] IPS
MeasureSystems.inchmercury
— Constant
inchmercury(U::UnitSystem) = pressure(inHg,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸inHg⁻¹τ⁻³2⁻⁴ = 2.3818029610(29) × 10⁻²¹) [ħ¹⁰𝘤⁻¹⁹μ₀⁻²mₑ⁻¹⁴Kcd⁻³ϕ¹⁰λ⁻²g₀¹¹] Unified
Unit of pressure
exerted by 1 inch of
mercury at standard atmospheric conditions.
juila> inchmercury(Metric) # Pa
inHg⁻¹ = 3386.3890000000006 [Pa] Metric
julia> inchmercury(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹inHg⁻¹ = 70.72620474736304 [lbf⋅ft⁻²] English
julia> inchmercury(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹inHg⁻¹2⁻⁴3⁻² = 0.49115419963446555 [lb⋅in⁻²] IPS
MeasureSystems.torr
— Constant
torr(U::UnitSystem) = pressure(atm/𝟐^3/𝟓/𝟏𝟗,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸atm⋅τ⁻³2⁻⁷5⁻¹19⁻¹ = 9.377174680(11) × 10⁻²³) [ħ¹⁰𝘤⁻¹⁹μ₀⁻²mₑ⁻¹⁴Kcd⁻³ϕ¹⁰λ⁻²g₀¹¹] Unified
Unit of pressure
exerted by 1 mm of
mercury at standard atmospheric conditions.
juila> torr(Metric) # Pa
atm⋅2⁻³5⁻¹19⁻¹ = 133.32236842105263 [Pa] Metric
julia> torr(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹atm⋅2⁻³5⁻¹19⁻¹ = 2.784495557465706 [lbf⋅ft⁻²] English
julia> torr(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹atm⋅2⁻⁷3⁻²5⁻¹19⁻¹ = 0.01933677470462296 [lb⋅in⁻²] IPS
Energy Units
MeasureSystems.erg
— Constant
erg(U::UnitSystem) = energy(𝟏,U,Gauss)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²2⁻⁸5⁻⁷ = 1.22143285705(37) × 10⁶) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Historical unit of energy
(J or
lb⋅ft).
julia> erg(Metric) # J
2⁻⁷5⁻⁷ = 1.0×10⁻⁷ [J] Metric
julia> erg(CGS) # erg
𝟏 = 1.0 [erg] Gauss
julia> erg(British) # lb⋅ft
g₀⁻¹ft⁻¹lb⁻¹2⁻⁷5⁻⁷ = 7.375621492772652×10⁻⁸ [lb⋅ft] British
MeasureSystems.joule
— Constant
joule(U::UnitSystem) = energy(𝟏,U,Metric)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²2⁻¹ = 1.22143285705(37) × 10¹³) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Metric unit of energy
(J or
lb⋅ft).
julia> joule(Metric) # J
𝟏 = 1.0 [J] Metric
julia> joule(CGS) # erg
2⁷5⁷ = 1.0×10⁷ [erg] Gauss
julia> joule(British) # lb⋅ft
g₀⁻¹ft⁻¹lb⁻¹ = 0.7375621492772653 [lb⋅ft] British
MeasureSystems.footpound
— Constant
footpound(U::UnitSystem) = poundforce(U)*foot(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²g₀⋅ft⋅lb⋅2⁻¹ = 1.65604059027(51) × 10¹³) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
English unit of energy
in
gravitational and engineering systems (J or
lb⋅ft).
julia> footpound(Metric) # J
g₀⋅ft⋅lb = 1.3558179483314003 [J] Metric
julia> footpound(CGS) # erg
g₀⋅ft⋅lb⋅2⁷5⁷ = 1.3558179483314004×10⁷ [erg] Gauss
julia> footpound(British) # lb⋅ft
𝟏 = 1.0 [lb⋅ft] British
MeasureSystems.calorie
— Constant
calorie(U::UnitSystem) = kilocalorie(U)/𝟐^3/𝟓^3
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²Ωᵢₜ⁻¹Vᵢₜ²2⋅3²5⋅43⁻¹ = 5.1138185304(16) × 10¹³) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Heat energy required to raise 1 g of water by 1
Kelvin (cal
) in
International
units.
julia> calorie(International) # J
2²3²5⋅43⁻¹ = 4.186046511627907 [J] International
julia> calorie(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2²3²5⋅43⁻¹ = 4.186737323211057 [J] Metric
julia> calorie(English) # ft⋅lb
g₀⁻¹ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2²3²5⋅43⁻¹ = 3.087978978566891 [lbf⋅ft] English
MeasureSystems.kilocalorie
— Constant
kilocalorie(U::UnitSystem) = energy(𝟐^5*𝟓^4*𝟑^2/𝟒𝟑,U,International)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²Ωᵢₜ⁻¹Vᵢₜ²2⁴3²5⁴43⁻¹ = 5.1138185304(16) × 10¹⁶) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Heat energy required to raise 1 kg of water by 1
Kelvin (kcal
) in
International
units.
julia> kilocalorie(International) # J
2⁵3²5⁴43⁻¹ = 4186.0465116279065 [J] International
julia> kilocalorie(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2⁵3²5⁴43⁻¹ = 4186.737323211056 [J] Metric
julia> kilocalorie(English) # ft⋅lb
g₀⁻¹ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁵3²5⁴43⁻¹ = 3087.978978566891 [lbf⋅ft] English
MeasureSystems.meancalorie
— Constant
meancalorie(U::UnitSystem) = energy(𝟐^2*𝟓*𝟑^2/𝟒𝟑,U,InternationalMean)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅1.0001900224889804 [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Heat energy required to raise 1 g of water by 1
Kelvin (cal
) in
InternationalMean
units.
julia> meancalorie(InternationalMean) # J
2²3²5⋅43⁻¹ = 4.186046511627907 [J] InternationalMean
julia> meancalorie(Metric) # J
2²3²5⋅43⁻¹⋅1.0001900224889804 = 4.186841954605034 [J] Metric
julia> meancalorie(English) # ft⋅lb
g₀⁻¹ft⁻¹lb⁻¹2²3²5⋅43⁻¹⋅1.0001900224889804 = 3.0880561507227156 [lbf⋅ft] English
MeasureSystems.earthcalorie
— Constant
earthcalorie(U::UnitSystem) = calorie(U)*(sqrt(g₀/GME)/τ)^3*𝟐^27*𝟓^21
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²g₀⁻³ᐟ²Ωᵢₜ⁻¹Vᵢₜ²GME³ᐟ²τ³2⁻²⁶3²5⁻²⁰43⁻¹ = 5.136065976(16) × 10¹³) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Heat energy required to raise 1
earthgram
of water by 1
kelvin
in Meridian
units.
julia> earthcalorie(Meridian) # J
g₀⋅Ωᵢₜ⁻¹Vᵢₜ²GME⁻¹τ⁻²2²⁰3²5¹⁵43⁻¹ = 4.1746383635(84) [eJ] Meridian
julia> earthcalorie(Metric) # J
g₀⁻³ᐟ²Ωᵢₜ⁻¹Vᵢₜ²GME³ᐟ²τ³2⁻²⁵3²5⁻²⁰43⁻¹ = 4.204951542(13) [J] Metric
julia> earthcalorie(British) # ft⋅lb
g₀⁻⁵ᐟ²ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²GME³ᐟ²τ³2⁻²⁵3²5⁻²⁰43⁻¹ = 3.1014130969(93) [lb⋅ft] British
MeasureSystems.thermalunit
— Constant
thermalunit(U::UnitSystem) = kilocalorie(U)*𝟑^2/𝟓/lb
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁴5⁵43⁻¹ = 1.28866059275(39) × 10¹⁶) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Heat energy required to raise 1 lb of water by 1
Rankine (BTU
) in
International
units.
julia> thermalunit(British) # ft⋅lb
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 778.1576129990752 [lb⋅ft] British
julia> thermalunit(International) # J
lb⋅2⁵5⁵43⁻¹ = 1054.8659767441861 [J] International
julia> thermalunit(Metric) # J
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 1055.0400583348662 [J] Metric
MeasureSystems.gasgallon
— Constant
gasgallon(U::UnitSystem) = 𝟐*𝟑*𝟏𝟗*kilo*thermalunit(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁸3⋅5⁸19⋅43⁻¹ = 1.46907307574(45) × 10²¹) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Gasoline gallon equivalent reference unit of
energy
(J or lb⋅ft).
julia> gasgallon(Metric) # J
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁹3⋅5⁸19⋅43⁻¹ = 1.2027456665017475×10⁸ [J] Metric
julia> gasgallon(CGS) # erg
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2¹⁶3⋅5¹⁵19⋅43⁻¹ = 1.2027456665017475×10¹⁵ [erg] Gauss
julia> gasgallon(British) # lb⋅ft
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁹3⋅5⁸19⋅43⁻¹ = 8.870996788189459×10⁷ [lb⋅ft] British
MeasureSystems.tontnt
— Constant
tontnt(U::UnitSystem) = giga*calorie(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²Ωᵢₜ⁻¹Vᵢₜ²2¹⁰3²5¹⁰43⁻¹ = 5.1138185304(16) × 10²²) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Ton TNT equivalent reference unit of
energy
(J or lb⋅ft).
julia> tontnt(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2¹¹3²5¹⁰43⁻¹ = 4.186737323211056×10⁹ [J] Metric
julia> tontnt(CGS) # erg
Ωᵢₜ⁻¹Vᵢₜ²2¹⁸3²5¹⁷43⁻¹ = 4.186737323211057×10¹⁶ [erg] Gauss
julia> tontnt(British) # lb⋅ft
g₀⁻¹ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2¹¹3²5¹⁰43⁻¹ = 3.087978978566891×10⁹ [lb⋅ft] British
MeasureSystems.electronvolt
— Constant
electronvolt(U::UnitSystem) = elementarycharge(U)*volt(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹𝘦⋅R∞⁻¹α²2⁻¹ = 1.95695118356(60) × 10⁻⁶) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Unit of energy
gained by a rest
electron accelerated by 1 volt
in vacuum
(J or lb⋅ft).
julia> electronvolt(SI2019) # J
𝘦 = 1.602176634×10⁻¹⁹ [J] SI2019
julia> electronvolt(SI2019)/lightspeed(SI2019) # kg⋅m⋅s⁻¹
𝘤⁻¹𝘦 = 5.344285992678308×10⁻²⁸ [N⋅s] SI2019
julia> electronvolt(SI2019)/lightspeed(SI2019)^2 # kg
𝘤⁻²𝘦 = 1.7826619216278975×10⁻³⁶ [kg] SI2019
julia> electronvolt(SI2019)/planck(SI2019)/lightspeed(SI2019) # m⁻¹
𝘩⁻¹𝘤⁻¹𝘦 = 806554.393734921 [m⁻¹] SI2019
julia> electronvolt(SI2019)/boltzmann(SI2019) # K
kB⁻¹𝘦 = 11604.518121550082 [K] SI2019
Power Units
MeasureSystems.watt
— Constant
watt(U::UnitSystem) = power(𝟏,U,Metric)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴τ⁻¹2⁻² = 1.57331382212(96) × 10⁻⁸) [ħ⁶𝘤⁻⁹μ₀⁻¹mₑ⁻⁷Kcd⁻¹ϕ⁶λ⁻¹g₀⁶] Unified
Metric watt
unit of
power
(W or lb⋅ft⋅s⁻¹).
julia> watt(Metric) # W
𝟏 = 1.0 [W] Metric
julia> watt(English) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹lb⁻¹ = 0.7375621492772653 [lbf⋅ft⋅s⁻¹] English
julia> watt(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹ = 0.10197162129779283 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.horsepowerwatt
— Constant
horsepowerwatt(U::UnitSystem) = power(𝟐^4*𝟑^3/𝟓*τ,U,British)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴g₀⋅ft⋅lb⋅2²3³5⁻¹ = 1.15800476849(71) × 10⁻⁵) [ħ⁶𝘤⁻⁹μ₀⁻¹mₑ⁻⁷Kcd⁻¹ϕ⁶λ⁻¹g₀⁶] Unified
Unit of power
derived from Watt's
exact original horse power estimate.
julia> horsepowerwatt(British) # lb⋅ft⋅s⁻¹
τ⋅2⁴3³5⁻¹ = 542.8672105403163 [lb⋅ft⋅s⁻¹] British
julia> horsepowerwatt(Metric) # W
g₀⋅ft⋅lb⋅τ⋅2⁴3³5⁻¹ = 736.0291076111621 [W] Metric
julia> horsepowerwatt(Engineering) # kgf⋅m⋅s⁻¹
ft⋅lb⋅τ⋅2⁴3³5⁻¹ = 75.05408142547782 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.horsepowermetric
— Constant
horsepowermetric(U::UnitSystem) = power(𝟑*𝟓^2,U,Gravitational)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴g₀⋅τ⁻¹2⁻²3⋅5² = 1.15717034952(71) × 10⁻⁵) [ħ⁶𝘤⁻⁹μ₀⁻¹mₑ⁻⁷Kcd⁻¹ϕ⁶λ⁻¹g₀⁶] Unified
Unit of power
derived from raising 75
kp by 1 m in 1 in 1 s.
julia> horsepowermetric(British) # lb⋅ft⋅s⁻¹
ft⁻¹lb⁻¹3⋅5² = 542.476038840742 [lb⋅ft⋅s⁻¹] British
julia> horsepowermetric(Metric) # W
g₀⋅3⋅5² = 735.49875 [W] Metric
julia> horsepowermetric(Engineering) # kgf⋅m⋅s⁻¹
3⋅5² = 75.0 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.horsepower
— Constant
horsepower(U::UnitSystem) = power(𝟐*𝟓^2*𝟏𝟏,U,British)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴g₀⋅ft⋅lb⋅τ⁻¹2⁻¹5²11 = 1.17321991511(72) × 10⁻⁵) [ħ⁶𝘤⁻⁹μ₀⁻¹mₑ⁻⁷Kcd⁻¹ϕ⁶λ⁻¹g₀⁶] Unified
Unit of power
derived from raising
550 lb by 1 ft in 1 in 1 s.
julia> horsepower(British) # lb⋅ft⋅s⁻¹
2⋅5²11 = 550.0 [lb⋅ft⋅s⁻¹] British
julia> horsepower(Metric) # W
g₀⋅ft⋅lb⋅2⋅5²11 = 745.6998715822701 [W] Metric
julia> horsepower(Engineering) # kgf⋅m⋅s⁻¹
ft⋅lb⋅2⋅5²11 = 76.0402249068 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.electricalhorsepower
— Constant
electricalhorsepower(U::UnitSystem) = power(746,U,Metric)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅373 [ħ⁶𝘤⁻⁹μ₀⁻¹mₑ⁻⁷Kcd⁻¹ϕ⁶λ⁻¹g₀⁶] Unified
Unit of power
for electrical motors
in the United States.
julia> electricalhorsepower(British) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹lb⁻¹2⋅373 = 550.2213633608399 [lb⋅ft⋅s⁻¹] British
julia> electricalhorsepower(Metric) # W
2⋅373 = 746.0 [W] Metric
julia> electricalhorsepower(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹2⋅373 = 76.07082948815345 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.tonsrefrigeration
— Constant
tonsrefrigeration(U::UnitSystem) = frequency(𝟐*𝟓/𝟑,U,Metric)*thermalunit(U)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴lb⋅Ωᵢₜ⁻¹Vᵢₜ²τ⁻¹2⁴3⁻¹5⁶43⁻¹ = 5.5330303556(34) × 10⁻⁵) [ħ⁶𝘤⁻⁹μ₀⁻¹mₑ⁻⁷Kcd⁻¹ϕ⁶λ⁻¹g₀⁶] Unified
Unit of power
derived from melting of
1 short ton of ice in 24 hours.
julia> tonsrefrigeration(British) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁶3⁻¹5⁶43⁻¹ = 2593.8587099969172 [lb⋅ft⋅s⁻¹] British
julia> tonsrefrigeration(Metric) # W
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁶3⁻¹5⁶43⁻¹ = 3516.8001944495536 [W] Metric
julia> tonsrefrigeration(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁶3⁻¹5⁶43⁻¹ = 358.613817608414 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.boilerhorsepower
— Constant
boilerhorsepower(U::UnitSystem) = frequency(1339/𝟐^4/𝟑^2,U,Metric)*thermalunit(U)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅1339 [ħ⁶𝘤⁻⁹μ₀⁻¹mₑ⁻⁷Kcd⁻¹ϕ⁶λ⁻¹g₀⁶] Unified
Unit of power
derived from
evaporating 34.5 lb of boiling water in 1 hour.
julia> boilerhorsepower(British) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⋅3⁻²5⁵43⁻¹⋅1339 = 7235.785026428902 [lb⋅ft⋅s⁻¹] British
julia> boilerhorsepower(Metric) # W
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⋅3⁻²5⁵43⁻¹⋅1339 = 9810.407209099902 [W] Metric
julia> boilerhorsepower(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⋅3⁻²5⁵43⁻¹⋅1339 = 1000.3831287034718 [kgf⋅m⋅s⁻¹] Engineering
Electromagnetic Units
Charge Units
MeasureSystems.coulomb
— Constant
coulomb(U::UnitSystem) = charge(𝟏,U,Metric)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²τ⋅2⁻³5⁻⁷ᐟ² = 1.890067014853257×10¹⁸) [ħ⁻³ᐟ²𝘤⁷ᐟ²mₑ⁵ᐟ²Kcd¹ᐟ²ϕ⁻²λ⁻¹g₀⁻²] Unified
Metric unit of charge
(C).
julia> coulomb(Metric) # C
𝟏 = 1.0 [C] Metric
julia> coulomb(EMU) # abC
2⁻¹5⁻¹ = 0.1 [g¹ᐟ²cm¹ᐟ²] EMU
julia> coulomb(ESU) # statC
𝘤⋅2⋅5 = 2.99792458×10⁹ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
MeasureSystems.earthcoulomb
— Constant
earthcoulomb(U::UnitSystem) = charge(𝟏,U,Meridian)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²g₀⁻¹GME⋅τ³2⁻²¹5⁻³⁵ᐟ² = 1.8955448174(38) × 10¹⁸) [ħ⁻³ᐟ²𝘤⁷ᐟ²mₑ⁵ᐟ²Kcd¹ᐟ²ϕ⁻²λ⁻¹g₀⁻²] Unified
Meridian unit of charge
(C).
julia> earthcoulomb(Metric) # C
g₀⁻¹GME⋅τ²2⁻¹⁸5⁻¹⁴ = 1.0028982055(20) [C] Metric
julia> earthcoulomb(EMU) # abC
g₀⁻¹GME⋅τ²2⁻¹⁹5⁻¹⁵ = 0.10028982055(20) [g¹ᐟ²cm¹ᐟ²] EMU
julia> earthcoulomb(ESU) # statC
𝘤⋅g₀⁻¹GME⋅τ²2⁻¹⁷5⁻¹³ = 3.0066131814(60) × 10⁹ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
MeasureSystems.abcoulomb
— Constant
abcoulomb(U::UnitSystem) = charge(𝟏,U,EMU)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²τ⋅2⁻²5⁻⁵ᐟ² = 1.8900670148532572×10¹⁹) [ħ⁻³ᐟ²𝘤⁷ᐟ²mₑ⁵ᐟ²Kcd¹ᐟ²ϕ⁻²λ⁻¹g₀⁻²] Unified
Electromagnetic unit of charge
(C).
julia> abcoulomb(Metric) # C
2⋅5 = 10.0 [C] Metric
julia> abcoulomb(EMU) # abC
𝟏 = 1.0 [g¹ᐟ²cm¹ᐟ²] EMU
julia> abcoulomb(ESU) # statC
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
MeasureSystems.statcoulomb
— Constant
statcoulomb(U::UnitSystem) = charge(𝟏,U,ESU)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²τ⋅2⁻⁴5⁻⁹ᐟ² = 6.304584936733987×10⁸) [ħ⁻³ᐟ²𝘤⁷ᐟ²mₑ⁵ᐟ²Kcd¹ᐟ²ϕ⁻²λ⁻¹g₀⁻²] Unified
Electrostatic unit of charge
(C).
julia> statcoulomb(Metric) # C
𝘤⁻¹2⁻¹5⁻¹ = 3.3356409519815207×10⁻¹⁰ [C] Metric
julia> statcoulomb(EMU) # abC
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm¹ᐟ²] EMU
julia> statcoulomb(ESU) # statC
𝟏 = 1.0 [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
Current Units
MeasureSystems.ampere
— Constant
ampere(U::UnitSystem) = current(𝟏,U,Metric)
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹Q⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²2⁻⁴5⁻⁷ᐟ² = 0.00243457390395(75)) [ħ²𝘤⁻³μ₀⁻¹ᐟ²mₑ⁻⁵ᐟ²Kcd⁻¹ᐟ²ϕ³ᐟ²λ⁻³ᐟ²g₀²] Unified
Metric unit of current
(C⋅s⁻¹).
julia> ampere(Metric) # C⋅s⁻¹
𝟏 = 1.0 [s⁻¹C] Metric
julia> ampere(EMU) # abC⋅s⁻¹
2⁻¹5⁻¹ = 0.1 [Mx⋅cm⁻¹] EMU
julia> ampere(ESU) # statC⋅s⁻¹
𝘤⋅2⋅5 = 2.99792458×10⁹ [g¹ᐟ²cm³ᐟ²s⁻²] ESU
MeasureSystems.abampere
— Constant
abampere(U::UnitSystem) = current(𝟏,U,EMU)
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹Q⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²2⁻³5⁻⁵ᐟ² = 0.0243457390395(75)) [ħ²𝘤⁻³μ₀⁻¹ᐟ²mₑ⁻⁵ᐟ²Kcd⁻¹ᐟ²ϕ³ᐟ²λ⁻³ᐟ²g₀²] Unified
Electromagnetic unit of current
(C⋅s⁻¹).
julia> abampere(Metric) # C⋅s⁻¹
2⋅5 = 10.0 [s⁻¹C] Metric
julia> abampere(EMU) # abC⋅s⁻¹
𝟏 = 1.0 [Mx⋅cm⁻¹] EMU
julia> abampere(ESU) # statC⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻²] ESU
MeasureSystems.statampere
— Constant
statampere(U::UnitSystem) = current(𝟏,U,ESU)
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹Q⋅(𝘩⁻¹ᐟ²𝘤⁻³ᐟ²R∞⁻¹α²2⁻⁵5⁻⁹ᐟ² = 8.1208644146(25) × 10⁻¹³) [ħ²𝘤⁻³μ₀⁻¹ᐟ²mₑ⁻⁵ᐟ²Kcd⁻¹ᐟ²ϕ³ᐟ²λ⁻³ᐟ²g₀²] Unified
Electrostatic unit of current
(C⋅s⁻¹).
julia> statampere(Metric) # C⋅s⁻¹
𝘤⁻¹2⁻¹5⁻¹ = 3.3356409519815207×10⁻¹⁰ [s⁻¹C] Metric
julia> statampere(EMU) # abC⋅s⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [Mx⋅cm⁻¹] EMU
julia> statampere(ESU) # statC⋅s⁻¹
𝟏 = 1.0 [g¹ᐟ²cm³ᐟ²s⁻²] ESU
Electromotive Units
MeasureSystems.volt
— Constant
volt(U::UnitSystem) = electricpotential(𝟏,U,Metric)
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
FLQ⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻³ᐟ²R∞⁻¹α²τ⁻¹2²5⁷ᐟ² = 6.4623785688(20) × 10⁻⁶) [ħ⁴𝘤⁻⁶μ₀⁻¹ᐟ²mₑ⁻⁹ᐟ²Kcd⁻¹ᐟ²ϕ⁹ᐟ²λ¹ᐟ²g₀⁴] Unified
Metric unit of electricpotential
(V).
julia> volt(Metric) # V
𝟏 = 1.0 [V] Metric
julia> volt(EMU) # abV
2⁸5⁸ = 1.0×10⁸ [g¹ᐟ²cm³ᐟ²s⁻²] EMU
julia> volt(ESU) # statV
𝘤⁻¹2⁶5⁶ = 0.0033356409519815205 [g¹ᐟ²cm¹ᐟ²s⁻¹] ESU
MeasureSystems.abvolt
— Constant
abvolt(U::UnitSystem) = electricpotential(𝟏,U,EMU)
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
FLQ⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻³ᐟ²R∞⁻¹α²τ⁻¹2⁻⁶5⁻⁹ᐟ² = 6.4623785688(20) × 10⁻¹⁴) [ħ⁴𝘤⁻⁶μ₀⁻¹ᐟ²mₑ⁻⁹ᐟ²Kcd⁻¹ᐟ²ϕ⁹ᐟ²λ¹ᐟ²g₀⁴] Unified
Electromagnetic unit of
electricpotential
(V).
julia> abvolt(Metric) # V
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [V] Metric
julia> abvolt(EMU) # abV
𝟏 = 1.0 [g¹ᐟ²cm³ᐟ²s⁻²] EMU
julia> abvolt(ESU) # statV
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm¹ᐟ²s⁻¹] ESU
MeasureSystems.statvolt
— Constant
statvolt(U::UnitSystem) = electricpotential(𝟏,U,ESU)
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
FLQ⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²τ⁻¹2⁻⁴5⁻⁵ᐟ² = 0.00193737235568(59)) [ħ⁴𝘤⁻⁶μ₀⁻¹ᐟ²mₑ⁻⁹ᐟ²Kcd⁻¹ᐟ²ϕ⁹ᐟ²λ¹ᐟ²g₀⁴] Unified
Electrostatic unit of
electricpotential
(V).
julia> statvolt(Metric) # V
𝘤⋅2⁻⁶5⁻⁶ = 299.792458 [V] Metric
julia> statvolt(EMU) # abV
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻²] EMU
julia> statvolt(ESU) # statV
𝟏 = 1.0 [g¹ᐟ²cm¹ᐟ²s⁻¹] ESU
Inductance Units
MeasureSystems.henry
— Constant
henry(U::UnitSystem) = inductance(𝟏,U,Metric)
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
FLT²Q⁻²⋅(R∞⋅α⁻²2⁷5⁷ = 2.06074224158(63) × 10¹⁸) [ħ⁻³ᐟ²𝘤⁷ᐟ²μ₀¹ᐟ²mₑ³Kcd⋅ϕ⁻¹ᐟ²λ⁵ᐟ²g₀⁻²] Unified
Metric unit of inductance
(H).
julia> henry(Metric) # H
𝟏 = 1.0 [H] Metric
julia> henry(EMU) # abH
2⁹5⁹ = 1.0×10⁹ [cm] EMU
julia> henry(ESU) # statH
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [cm⁻¹s²] ESU
MeasureSystems.abhenry
— Constant
abhenry(U::UnitSystem) = inductance(𝟏,U,EMU)
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
FLT²Q⁻²⋅(R∞⋅α⁻²2⁻²5⁻² = 2.06074224158(63) × 10⁹) [ħ⁻³ᐟ²𝘤⁷ᐟ²μ₀¹ᐟ²mₑ³Kcd⋅ϕ⁻¹ᐟ²λ⁵ᐟ²g₀⁻²] Unified
Electromagnetic unit of inductance
(H).
julia> abhenry(Metric) # H
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [H] Metric
julia> abhenry(EMU) # abH
𝟏 = 1.0 [cm] EMU
julia> abhenry(ESU) # statH
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s²] ESU
MeasureSystems.stathenry
— Constant
stathenry(U::UnitSystem) = inductance(𝟏,U,ESU)
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
FLT²Q⁻²⋅(𝘤²R∞⋅α⁻²2²5² = 1.85210276166(57) × 10³⁰) [ħ⁻³ᐟ²𝘤⁷ᐟ²μ₀¹ᐟ²mₑ³Kcd⋅ϕ⁻¹ᐟ²λ⁵ᐟ²g₀⁻²] Unified
Electrostatic unit of inductance
(H).
julia> stathenry(Metric) # H
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [H] Metric
julia> stathenry(EMU) # abH
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm] EMU
julia> stathenry(ESU) # statH
𝟏 = 1.0 [cm⁻¹s²] ESU
Resistance Units
MeasureSystems.ohm
— Constant
ohm(U::UnitSystem) = resistance(𝟏,U,Metric)
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(𝘤⁻¹τ⁻¹2⁶5⁷ = 0.0026544187294380724) [ħ²𝘤⁻³mₑ⁻²ϕ³λ²g₀²] Unified
Metric unit of resistance
(Ω).
julia> ohm(Metric) # Ω
𝟏 = 1.0 [Ω] Metric
julia> ohm(EMU) # abΩ
2⁹5⁹ = 1.0×10⁹ [cm⋅s⁻¹] EMU
julia> ohm(ESU) # statΩ
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [cm⁻¹s] ESU
MeasureSystems.abohm
— Constant
abohm(U::UnitSystem) = resistance(𝟏,U,EMU)
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(𝘤⁻¹τ⁻¹2⁻³5⁻² = 2.654418729438073×10⁻¹²) [ħ²𝘤⁻³mₑ⁻²ϕ³λ²g₀²] Unified
Electromagnetic unit of resistance
(Ω).
julia> abohm(Metric) # Ω
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [Ω] Metric
julia> abohm(EMU) # abΩ
𝟏 = 1.0 [cm⋅s⁻¹] EMU
julia> abohm(ESU) # statΩ
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s] ESU
MeasureSystems.statohm
— Constant
statohm(U::UnitSystem) = resistance(𝟏,U,ESU)
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(𝘤⋅τ⁻¹2⋅5² = 2.385672579618471×10⁹) [ħ²𝘤⁻³mₑ⁻²ϕ³λ²g₀²] Unified
Electrostatic unit of resistance
(Ω).
julia> statohm(Metric) # Ω
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [Ω] Metric
julia> statohm(EMU) # abΩ
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm⋅s⁻¹] EMU
julia> statohm(ESU) # statΩ
𝟏 = 1.0 [cm⁻¹s] ESU
Conductance Units
MeasureSystems.siemens
— Constant
siemens(U::UnitSystem) = conductance(𝟏,U,Metric)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(𝘤⋅τ⋅2⁻⁶5⁻⁷ = 376.7303134617706) [ħ⁻²𝘤³mₑ²ϕ⁻³λ⁻²g₀⁻²] Unified
Metric unit of conductance
(S).
julia> siemens(Metric) # S
𝟏 = 1.0 [S] Metric
julia> siemens(EMU) # abS
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [cm⁻¹s] EMU
julia> siemens(ESU) # statS
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [cm⋅s⁻¹] ESU
MeasureSystems.abmho
— Constant
abmho(U::UnitSystem) = conductance(𝟏,U,EMU)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(𝘤⋅τ⋅2³5² = 3.767303134617706×10¹¹) [ħ⁻²𝘤³mₑ²ϕ⁻³λ⁻²g₀⁻²] Unified
Electromagnetic unit of conductance
(S).
julia> abmho(Metric) # S
2⁹5⁹ = 1.0×10⁹ [S] Metric
julia> abmho(EMU) # abS
𝟏 = 1.0 [cm⁻¹s] EMU
julia> abmho(ESU) # statS
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm⋅s⁻¹] ESU
MeasureSystems.statmho
— Constant
statmho(U::UnitSystem) = conductance(𝟏,U,ESU)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(𝘤⁻¹τ⋅2⁻¹5⁻² = 4.1916900439033643×10⁻¹⁰) [ħ⁻²𝘤³mₑ²ϕ⁻³λ⁻²g₀⁻²] Unified
Electrostatic unit of conductance
(S).
julia> statmho(Metric) # S
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [S] Metric
julia> statmho(EMU) # abS
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s] EMU
julia> statmho(ESU) # statS
𝟏 = 1.0 [cm⋅s⁻¹] ESU
Capacitance Units
MeasureSystems.farad
— Constant
farad(U::UnitSystem) = capacitance(𝟏,U,Metric)
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
F⁻¹L⁻¹Q²⋅(𝘤²R∞⋅α⁻²τ²2⁻⁵5⁻⁷ = 2.92472345084(90) × 10²³) [ħ⁻¹¹ᐟ²𝘤¹⁹ᐟ²μ₀¹ᐟ²mₑ⁷Kcd⋅ϕ⁻¹³ᐟ²λ⁻³ᐟ²g₀⁻⁶] Unified
Metric unit of capacitance
(F).
julia> farad(Metric) # F
𝟏 = 1.0 [F] Metric
julia> farad(EMU) # abF
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [cm⁻¹s²] EMU
julia> farad(ESU) # statF
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [cm] ESU
MeasureSystems.abfarad
— Constant
abfarad(U::UnitSystem) = capacitance(𝟏,U,EMU)
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
F⁻¹L⁻¹Q²⋅(𝘤²R∞⋅α⁻²τ²2⁴5² = 2.92472345084(90) × 10³²) [ħ⁻¹¹ᐟ²𝘤¹⁹ᐟ²μ₀¹ᐟ²mₑ⁷Kcd⋅ϕ⁻¹³ᐟ²λ⁻³ᐟ²g₀⁻⁶] Unified
Electromagnetic unit of capacitance
(F).
julia> abfarad(Metric) # F
2⁹5⁹ = 1.0×10⁹ [F] Metric
julia> abfarad(EMU) # abF
𝟏 = 1.0 [cm⁻¹s²] EMU
julia> abfarad(ESU) # statF
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm] ESU
MeasureSystems.statfarad
— Constant
statfarad(U::UnitSystem) = capacitance(𝟏,U,ESU)
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
F⁻¹L⁻¹Q²⋅(R∞⋅α⁻²τ²5⁻² = 3.25419371152(10) × 10¹¹) [ħ⁻¹¹ᐟ²𝘤¹⁹ᐟ²μ₀¹ᐟ²mₑ⁷Kcd⋅ϕ⁻¹³ᐟ²λ⁻³ᐟ²g₀⁻⁶] Unified
Electrostatic unit of capacitance
(F).
julia> statfarad(Metric) # F
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [F] Metric
julia> statfarad(EMU) # abF
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s²] EMU
julia> statfarad(ESU) # statF
𝟏 = 1.0 [cm] ESU
Magnetic Flux Units
MeasureSystems.weber
— Constant
weber(U::UnitSystem) = magneticflux(𝟏,U,Metric)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²2³5⁷ᐟ² = 5.017029284119592×10¹⁵) [ħ¹ᐟ²𝘤¹ᐟ²mₑ¹ᐟ²Kcd¹ᐟ²ϕ] Unified
Metric unit of magneticflux
(Wb).
julia> weber(Metric) # Wb
𝟏 = 1.0 [Wb] Metric
julia> weber(EMU) # Mx
2⁸5⁸ = 1.0×10⁸ [Mx] EMU
julia> weber(ESU) # statWb
𝘤⁻¹2⁶5⁶ = 0.0033356409519815205 [g¹ᐟ²cm¹ᐟ²] ESU
MeasureSystems.maxwell
— Constant
maxwell(U::UnitSystem) = magneticflux(𝟏,U,EMU)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²2⁻⁵5⁻⁹ᐟ² = 5.017029284119592×10⁷) [ħ¹ᐟ²𝘤¹ᐟ²mₑ¹ᐟ²Kcd¹ᐟ²ϕ] Unified
Electromagnetic unit of magneticflux
(Wb).
julia> maxwell(Metric) # Wb
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [Wb] Metric
julia> maxwell(EMU) # Mx
𝟏 = 1.0 [Mx] EMU
julia> maxwell(ESU) # statWb
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm¹ᐟ²] ESU
MeasureSystems.statweber
— Constant
statweber(U::UnitSystem) = magneticflux(𝟏,U,ESU)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²2⁻³5⁻⁵ᐟ² = 1.5040675409441933×10¹⁸) [ħ¹ᐟ²𝘤¹ᐟ²mₑ¹ᐟ²Kcd¹ᐟ²ϕ] Unified
Electrostatic unit of magneticflux
(Wb).
julia> statweber(Metric) # Wb
𝘤⋅2⁻⁶5⁻⁶ = 299.792458 [Wb] Metric
julia> statweber(EMU) # Mx
𝘤⋅2²5² = 2.99792458×10¹⁰ [Mx] EMU
julia> statweber(ESU) # statWb
𝟏 = 1.0 [g¹ᐟ²cm¹ᐟ²] ESU
Magnetic Flux Density Units
MeasureSystems.tesla
— Constant
tesla(U::UnitSystem) = magneticfluxdensity(𝟏,U,Metric)
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
FL⁻¹TQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻²α⁴τ⁻²2⋅5⁷ᐟ² = 7.4813429063(46) × 10⁻¹⁰) [ħ¹¹ᐟ²𝘤⁻²¹ᐟ²μ₀⁻¹mₑ⁻¹⁵ᐟ²Kcd⁻³ᐟ²ϕ⁶λ⁻¹g₀⁶] Unified
Metric unit of magneticfluxdensity
(T).
julia> tesla(Metric) # T
𝟏 = 1.0 [T] Metric
julia> tesla(EMU) # G
2⁴5⁴ = 10000.0 [G] EMU
julia> tesla(ESU) # statT
𝘤⁻¹2²5² = 3.3356409519815204×10⁻⁷ [g¹ᐟ²cm⁻³ᐟ²] ESU
MeasureSystems.gauss
— Constant
gauss(U::UnitSystem) = magneticfluxdensity(𝟏,U,EMU)
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
FL⁻¹TQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻²α⁴τ⁻²2⁻³5⁻¹ᐟ² = 7.4813429063(46) × 10⁻¹⁴) [ħ¹¹ᐟ²𝘤⁻²¹ᐟ²μ₀⁻¹mₑ⁻¹⁵ᐟ²Kcd⁻³ᐟ²ϕ⁶λ⁻¹g₀⁶] Unified
Electromagnetic unit of
magneticfluxdensity
(T).
julia> gauss(Metric) # T
2⁻⁴5⁻⁴ = 0.0001 [T] Metric
julia> gauss(EMU) # G
𝟏 = 1.0 [G] EMU
julia> gauss(ESU) # statT
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm⁻³ᐟ²] ESU
MeasureSystems.stattesla
— Constant
stattesla(U::UnitSystem) = magneticfluxdensity(𝟏,U,ESU)
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
FL⁻¹TQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻²α⁴τ⁻²2⁻¹5³ᐟ² = 0.0022428501790(14)) [ħ¹¹ᐟ²𝘤⁻²¹ᐟ²μ₀⁻¹mₑ⁻¹⁵ᐟ²Kcd⁻³ᐟ²ϕ⁶λ⁻¹g₀⁶] Unified
Electrostatic unit of
magneticfluxdensity
(T).
julia> stattesla(Metric) # T
𝘤⋅2⁻²5⁻² = 2.9979245800000005×10⁶ [T] Metric
julia> stattesla(EMU) # G
𝘤⋅2²5² = 2.99792458×10¹⁰ [G] EMU
julia> stattesla(ESU) # statT
𝟏 = 1.0 [g¹ᐟ²cm⁻³ᐟ²] ESU
Magnetic Specialized Units
MeasureSystems.oersted
— Constant
oersted(U::UnitSystem) = magneticfield(𝟏,U,EMU)
magneticfield : [L⁻¹T⁻¹QRC⁻¹], [L⁻¹T⁻¹Q], [L⁻¹T⁻¹Q], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²T⁻²]
L⁻¹T⁻¹QRC⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻²α⁴τ⁻²2⁻³5⁻¹ᐟ² = 7.4813429063(46) × 10⁻¹⁴) [ħ⁹ᐟ²𝘤⁻¹⁷ᐟ²μ₀⁻¹mₑ⁻¹³ᐟ²Kcd⁻³ᐟ²ϕ⁵λ⁻¹g₀⁵] Unified
Electromagnetic unit of magneticfield
(Oe).
julia> oersted(Metric) # A⋅m⁻¹
τ⁻¹2²5³ = 79.57747154594767 [m⁻¹s⁻¹C] Metric
julia> oersted(EMU) # Oe
𝟏 = 1.0 [G] EMU
julia> oersted(ESU) # statA⋅cm⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm¹ᐟ²s⁻²] ESU
MeasureSystems.gilbert
— Constant
gilbert(U::UnitSystem) = abampere(U)/𝟐/turn(U)
nonstandard : [T⁻¹QA⁻¹], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹QA⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²τ⁻¹2⁻⁴5⁻⁵ᐟ² = 0.00193737235568(59)) [ħ³𝘤⁻⁷μ₀⁻¹ᐟ²mₑ⁻⁹ᐟ²Kcd⁻³ᐟ²ϕ⁵ᐟ²λ⁻³ᐟ²g₀⁴] Unified
Electromagnetic unit of magnetization (Gb).
julia> gilbert(Metric) # A⋅rad⁻¹
τ⁻¹5 = 0.7957747154594768 [s⁻¹C] Metric
julia> gilbert(EMU) # Gb
τ⁻¹2⁻¹ = 0.07957747154594767 [Mx⋅cm⁻¹] EMU
julia> gilbert(ESU) # statA⋅rad⁻¹
𝘤⋅τ⁻¹2⋅5² = 2.385672579618471×10⁹ [g¹ᐟ²cm³ᐟ²s⁻²] ESU
Thermodynamic Units
MeasureSystems.kelvin
— Constant
kelvin(U::UnitSystem) = temperature(𝟏,U,Metric)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³5³ = 1.686370052070(49) × 10⁻¹⁰) [ħ⁷ᐟ²𝘤⁻¹¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁴ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
Metric unit of temperature
(K or
°R).
julia> kelvin(Metric) # K
𝟏 = 1.0 [K] Metric
julia> kelvin(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [K] SI2019
julia> kelvin(British) # °R
3²5⁻¹ = 1.8 [°R] British
MeasureSystems.rankine
— Constant
rankine(U::UnitSystem) = temperature(𝟏,U,English)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³3⁻²5⁴ = 9.36872251150(27) × 10⁻¹¹) [ħ⁷ᐟ²𝘤⁻¹¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁴ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
English unit of temperature
(K or
°R).
julia> rankine(Metric) # K
3⁻²5 = 0.5555555555555556 [K] Metric
julia> rankine(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴ = 0.55555555536(17) [K] SI2019
julia> rankine(British) # °R
𝟏 = 1.0 [°R] British
MeasureSystems.celsius
— Constant
celsius(U::UnitSystem) = temperature(T₀,U,Metric)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹T₀⋅2³5³ = 4.60631979723(13) × 10⁻⁸) [ħ⁷ᐟ²𝘤⁻¹¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁴ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
Metric unit of temperature
(K or
°R).
julia> celsius(Metric) # K
T₀ = 273.15 [K] Metric
julia> celsius(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹T₀⋅2⁴5³ = 273.149999906(84) [K] SI2019
julia> celsius(British) # °R
T₀⋅3²5⁻¹ = 491.66999999999996 [°R] British
MeasureSystems.fahrenheit
— Constant
fahrenheit(U::UnitSystem) = temperature(Constant(459.67),U,English)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅459.67 [ħ⁷ᐟ²𝘤⁻¹¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁴ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
English unit of temperature
(K or
°R).
julia> fahrenheit(Metric) # K
3⁻²5⋅459.67 = 255.37222222222223 [K] Metric
julia> fahrenheit(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴⋅459.67 = 255.372222134(79) [K] SI2019
julia> fahrenheit(British) # °R
459.67 = 459.67 [°R] British
MeasureSystems.sealevel
— Constant
sealevel(U::UnitSystem) = temperature(T₀+𝟑*𝟓,U)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅288.15 [ħ⁷ᐟ²𝘤⁻¹¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁴ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
Standard temperature
reference at
sealevel
(K or °R).
julia> sealevel(Metric) # K
288.15 = 288.15 [K] Metric
julia> sealevel(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅288.15 = 288.149999901(89) [K] SI2019
julia> sealevel(English) # °R
3²5⁻¹⋅288.15 = 518.67 [°R] English
MeasureSystems.boiling
— Constant
boiling(U::UnitSystem) = temperature(T₀+Constant(99.9839),U)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅373.1339 [ħ⁷ᐟ²𝘤⁻¹¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁴ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
Standard temperature
reference at
boiling
point of water (K or °R).
julia> boiling(Metric) # K
373.1339 = 373.1339 [K] Metric
julia> boiling(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅373.1339 = 373.13389987(11) [K] SI2019
julia> boiling(English) # °R
3²5⁻¹⋅373.1339 = 671.64102 [°R] English
MeasureSystems.mole
— Constant
mole(U::UnitSystem) = molaramount(𝟏,U,Metric)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2⁻⁴5⁻³ = 1.09776910575(34) × 10²⁷) [kB⋅ħ¹ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀] Unified
Molecular molaramount
unit (mol or
lb-mol).
julia> mole(Metric) # mol
𝟏 = 1.0 [mol] Metric
julia> mole(English) # lb-mol
lb⁻¹2⁻³5⁻³ = 0.002204622621848776 [lb-mol] English
julia> mole(British) # slug-mol
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [slug-mol] British
MeasureSystems.earthmole
— Constant
earthmole(U::UnitSystem) = molaramount(𝟏,U,Meridian)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⁻³ᐟ²GME³ᐟ²τ³2⁻³¹5⁻²⁴ = 1.1025449025(33) × 10²⁷) [kB⋅ħ¹ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀] Unified
Molecular molaramount
unit (mol or
lb-mol).
julia> earthmole(Metric) # mol
g₀⁻³ᐟ²GME³ᐟ²τ³2⁻²⁷5⁻²¹ = 1.0043504565(30) [mol] Metric
julia> earthmole(English) # lb-mol
g₀⁻³ᐟ²lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 0.0022142137367(67) [lb-mol] English
julia> earthmole(British) # slug-mol
g₀⁻⁵ᐟ²ft⋅lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 6.881986682(21) × 10⁻⁵ [slug-mol] British
MeasureSystems.poundmole
— Constant
poundmole(U::UnitSystem) = molaramount(𝟏,U,English)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻¹ = 4.9793969039(15) × 10²⁹) [kB⋅ħ¹ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀] Unified
Molecular molaramount
unit (mol or
lb-mol).
julia> poundmole(Metric) # mol
lb⋅2³5³ = 453.59237 [mol] Metric
julia> poundmole(English) # lb-mol
𝟏 = 1.0 [lb-mol] English
julia> poundmole(British) # slug-mol
g₀⁻¹ft = 0.031080950171567256 [slug-mol] British
MeasureSystems.slugmole
— Constant
slugmole(U::UnitSystem) = molaramount(𝟏,U,British)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⁻¹ = 1.60207357768(49) × 10³¹) [kB⋅ħ¹ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀] Unified
Molecular molaramount
unit (mol or
lb-mol).
julia> slugmole(Metric) # mol
g₀⋅ft⁻¹lb⋅2³5³ = 14593.902937206363 [mol] Metric
julia> slugmole(English) # lb-mol
g₀⋅ft⁻¹ = 32.17404855643044 [lb-mol] English
julia> slugmole(British) # slug-mol
𝟏 = 1.0 [slug-mol] British
MeasureSystems.slinchmole
— Constant
slinchmole(U::UnitSystem) = molaramount(𝟏,U,IPS)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⋅3 = 1.92248829321(59) × 10³²) [kB⋅ħ¹ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀] Unified
Molecular molaramount
unit (mol or
lb-mol).
julia> slinchmole(Metric) # mol
g₀⋅ft⁻¹lb⋅2⁵3⋅5³ = 175126.83524647637 [mol] Metric
julia> slinchmole(English) # lb-mol
g₀⋅ft⁻¹2²3 = 386.0885826771653 [lb-mol] English
julia> slinchmole(British) # slug-mol
2²3 = 12.0 [slug-mol] British
MeasureSystems.katal
— Constant
katal(U::UnitSystem) = catalysis(𝟏,U,Metric)
catalysis : [T⁻¹N], [T⁻¹N], [T⁻¹N], [T⁻¹N], [T⁻¹N]
T⁻¹N⋅(𝘩⁻¹R∞⁻²α⁴τ⁻¹2⁻⁵5⁻³ = 1.41402394541(87) × 10⁶) [kB⋅ħ⁴𝘤⁻⁹μ₀⁻¹mₑ⁻⁶Kcd⁻¹ϕ⁴λ⁻¹αL⁻¹g₀⁵] Unified
Metric unit of catalysis
(mol⋅s⁻¹ or
lb-mol⋅s⁻¹).
julia> katal(Metric) # mol⋅s⁻¹
𝟏 = 1.0 [kat] Metric
julia> katal(English) # lb-mol⋅s⁻¹
lb⁻¹2⁻³5⁻³ = 0.002204622621848776 [s⁻¹lb-mol] English
julia> katal(British) # slug-mol⋅s⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [s⁻¹slug-mol] British
MeasureSystems.amagat
— Constant
amagat(U::UnitSystem) = loschmidt(U)/avogadro(U)
molarity : [L⁻³N], [L⁻³N], [L⁻³N], [L⁻³N], [L⁻³N]
L⁻³N⋅(kB⁻¹R∞⁻³α⁶μₑᵤ⁻¹T₀⁻¹atm⋅τ⁻³2⁻³ = 2.8202760171(26) × 10⁻⁹) [kB⋅ħ⁸𝘤⁻¹⁹μ₀⁻²mₑ⁻¹³Kcd⁻³ϕ⁸λ⁻²αL⁻¹g₀¹⁰] Unified
Number of moles of an ideal gas in a unit volume (mol⋅m⁻³ or lb-mol⋅ft⁻³).
julia> amagat(Metric) # mol⋅m⁻³
kB⁻¹𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹T₀⁻¹atm⋅2⁴5³ = 44.615033390(14) [m⁻³mol] Metric
julia> amagat(SI2019) # mol⋅m⁻³
kB⁻¹NA⁻¹T₀⁻¹atm = 44.615033405470314 [m⁻³mol] SI2019
julia> amagat(English) # slug-mol⋅ft⁻³
kB⁻¹𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft³lb⁻¹T₀⁻¹atm⋅2 = 0.00278522554558(86) [ft⁻³lb-mol] English
Photometric Units
MeasureSystems.lumen
— Constant
lumen(U::UnitSystem) = luminousflux(𝟏,U,Metric)
luminousflux : [J], [J], [J], [J], [J]
J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻²α⁴τ⁻¹2⁻² = 2.3034677403(14) × 10⁻¹¹) [ħ⁶𝘤⁻⁹μ₀⁻¹mₑ⁻⁶Mᵤ⁻¹Kcd⁻¹ϕ⁶λ⁻¹g₀⁶] Unified
Common unit of luminousflux
(lm).
julia> lumen(Metric) # lm
𝟏 = 1.0 [cd] Metric
julia> lumen(CGS) # lm
𝟏 = 1.0 [cd] Gauss
julia> lumen(English) # lm
𝟏 = 1.0 [lm] English
MeasureSystems.candela
— Constant
candela(U::UnitSystem) = luminousintensity(𝟏,U,Metric)
luminousintensity : [JA⁻²], [J], [J], [J], [J]
JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻²α⁴τ⁻¹2⁻² = 2.3034677403(14) × 10⁻¹¹) [ħ⁸𝘤⁻¹⁷μ₀⁻¹mₑ⁻¹⁰Mᵤ⁻¹Kcd⁻³ϕ⁸λ⁻¹g₀¹⁰] Unified
Common unit of luminousintensity
(cd).
julia> candela(Engineering) # lm⋅rad⁻²
𝟏 = 1.0 [lm⋅rad⁻²] Engineering
julia> candela(MetricDegree) # lm⋅deg⁻²
τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087 [lm⋅deg⁻²] MetricDegree
julia> candela(MetricGradian) # lm⋅gon⁻²
τ²2⁻⁸5⁻⁴ = 0.00024674011002723397 [lm⋅gon⁻²] MetricGradian
julia> candela(CGS) # cd
𝟏 = 1.0 [cd] Gauss
julia> candela(English) # cd
𝟏 = 1.0 [cd] English
MeasureSystems.lux
— Constant
lux(U::UnitSystem) = illuminance(𝟏,U,Metric)
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 3.4349076043(42) × 10⁻³⁶) [ħ¹¹𝘤⁻²⁰μ₀⁻²mₑ⁻¹⁴Mᵤ⁻¹Kcd⁻³ϕ¹¹λ⁻²g₀¹²] Unified
Metric unit of illuminance
(lx).
julia> lux(Metric) # lx
𝟏 = 1.0 [lx] Metric
julia> lux(CGS) # ph
2⁻⁴5⁻⁴ = 0.0001 [ph] Gauss
julia> lux(English) # fc
ft² = 0.09290304 [fc] English
MeasureSystems.phot
— Constant
phot(U::UnitSystem) = illuminance(𝟏,U,Gauss)
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³5⁴ = 3.4349076043(42) × 10⁻³²) [ħ¹¹𝘤⁻²⁰μ₀⁻²mₑ⁻¹⁴Mᵤ⁻¹Kcd⁻³ϕ¹¹λ⁻²g₀¹²] Unified
Historic unit of illuminance
(lx).
julia> phot(Metric) # lx
2⁴5⁴ = 10000.0 [lx] Metric
julia> phot(CGS) # ph
𝟏 = 1.0 [ph] Gauss
julia> phot(English) # fc
ft²2⁴5⁴ = 929.0304000000001 [fc] English
MeasureSystems.footcandle
— Constant
footcandle(U::UnitSystem) = illuminance(𝟏,U,English)
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸ft⁻²τ⁻³2⁻⁴ = 3.6973037742(45) × 10⁻³⁵) [ħ¹¹𝘤⁻²⁰μ₀⁻²mₑ⁻¹⁴Mᵤ⁻¹Kcd⁻³ϕ¹¹λ⁻²g₀¹²] Unified
English unit of illuminance
(lx).
julia> footcandle(Metric) # lx
ft⁻² = 10.76391041670972 [lx] Metric
julia> footcandle(CGS) # ph
ft⁻²2⁻⁴5⁻⁴ = 0.0010763910416709721 [ph] Gauss
julia> footcandle(English) # fc
𝟏 = 1.0 [fc] English
MeasureSystems.nit
— Constant
nit(U::UnitSystem) = luminance(𝟏,U,Metric)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 3.4349076043(42) × 10⁻³⁶) [ħ¹³𝘤⁻²⁸μ₀⁻²mₑ⁻¹⁸Mᵤ⁻¹Kcd⁻⁵ϕ¹³λ⁻²g₀¹⁶] Unified
Metric unit of luminance
(lx⋅rad⁻²).
julia> nit(Engineering) # nt
𝟏 = 1.0 [nt] Engineering
julia> nit(MetricDegree) # lm⋅m⁻²deg⁻²
τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087 [m⁻²lm⋅deg⁻²] MetricDegree
julia> nit(MetricGradian) # lm⋅m⁻²gon⁻²
τ²2⁻⁸5⁻⁴ = 0.00024674011002723397 [m⁻²lm⋅gon⁻²] MetricGradian
julia> nit(CGS) # sb
2⁻⁴5⁻⁴ = 0.0001 [ph] Gauss
julia> nit(English) # fc
ft² = 0.09290304 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.apostilb
— Constant
apostilb(U::UnitSystem) = luminance(𝟐/turn(U),U,Metric)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻⁴2⁻³ = 1.0933650486(13) × 10⁻³⁶) [ħ¹³𝘤⁻²⁸μ₀⁻²mₑ⁻¹⁸Mᵤ⁻¹Kcd⁻⁵ϕ¹³λ⁻²g₀¹⁶] Unified
Metric unit of luminance
(lx⋅rad⁻²).
julia> apostilb(Engineering) # nt
τ⁻¹2 = 0.3183098861837907 [nt] Engineering
julia> apostilb(MetricDegree) # lm⋅m⁻²deg⁻²
τ⋅2⁻⁵3⁻⁴5⁻² = 9.696273622190722×10⁻⁵ [m⁻²lm⋅deg⁻²] MetricDegree
julia> apostilb(MetricGradian) # lm⋅m⁻²gon⁻²
τ⋅2⁻⁷5⁻⁴ = 7.853981633974483×10⁻⁵ [m⁻²lm⋅gon⁻²] MetricGradian
julia> apostilb(CGS) # sb
τ⁻¹2⁻³5⁻⁴ = 3.183098861837907×10⁻⁵ [ph] Gauss
julia> apostilb(English) # fc
ft²τ⁻¹2 = 0.029571956088528157 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.stilb
— Constant
stilb(U::UnitSystem) = luminance(𝟏,U,Gauss)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³5⁴ = 3.4349076043(42) × 10⁻³²) [ħ¹³𝘤⁻²⁸μ₀⁻²mₑ⁻¹⁸Mᵤ⁻¹Kcd⁻⁵ϕ¹³λ⁻²g₀¹⁶] Unified
Historic unit of luminance
(lx⋅rad⁻²).
julia> stilb(Engineering) # nt
2⁴5⁴ = 10000.0 [nt] Engineering
julia> stilb(MetricDegree) # lm⋅m⁻²deg⁻²
τ²2⁻²3⁻⁴5² = 3.0461741978670855 [m⁻²lm⋅deg⁻²] MetricDegree
julia> stilb(MetricGradian) # lm⋅m⁻²gon⁻²
τ²2⁻⁴ = 2.4674011002723395 [m⁻²lm⋅gon⁻²] MetricGradian
julia> stilb(CGS) # sb
𝟏 = 1.0 [ph] Gauss
julia> stilb(English) # fc
ft²2⁴5⁴ = 929.0304000000001 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.lambert
— Constant
lambert(U::UnitSystem) = luminance(𝟐/turn(U),U,Gauss)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻⁴2⋅5⁴ = 1.0933650486(13) × 10⁻³²) [ħ¹³𝘤⁻²⁸μ₀⁻²mₑ⁻¹⁸Mᵤ⁻¹Kcd⁻⁵ϕ¹³λ⁻²g₀¹⁶] Unified
Historic unit of luminance
(nt).
julia> lambert(Engineering) # nt
τ⁻¹2⁵5⁴ = 3183.098861837907 [nt] Engineering
julia> lambert(MetricDegree) # lm⋅m⁻²deg⁻²
τ⋅2⁻¹3⁻⁴5² = 0.9696273622190719 [m⁻²lm⋅deg⁻²] MetricDegree
julia> lambert(MetricGradian) # lm⋅m⁻²gon⁻²
τ⋅2⁻³ = 0.7853981633974483 [m⁻²lm⋅gon⁻²] MetricGradian
julia> lambert(CGS) # sb
τ⁻¹2 = 0.3183098861837907 [ph] Gauss
julia> lambert(English) # fc
ft²τ⁻¹2⁵5⁴ = 295.71956088528157 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.footlambert
— Constant
footlambert(U::UnitSystem) = luminance(𝟐/turn(U),U,English)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸ft⁻²τ⁻⁴2⁻³ = 1.1768883436(14) × 10⁻³⁵) [ħ¹³𝘤⁻²⁸μ₀⁻²mₑ⁻¹⁸Mᵤ⁻¹Kcd⁻⁵ϕ¹³λ⁻²g₀¹⁶] Unified
English unit of luminance
(nt).
julia> footlambert(Engineering) # nt
ft⁻²τ⁻¹2 = 3.42625909963539 [nt] Engineering
julia> footlambert(MetricDegree) # lm⋅m⁻²deg⁻²
ft⁻²τ⋅2⁻⁵3⁻⁴5⁻² = 0.001043698206451664 [m⁻²lm⋅deg⁻²] MetricDegree
julia> footlambert(MetricGradian) # lm⋅m⁻²gon⁻²
ft⁻²τ⋅2⁻⁷5⁻⁴ = 0.0008453955472258477 [m⁻²lm⋅gon⁻²] MetricGradian
julia> footlambert(CGS) # sb
ft⁻²τ⁻¹2⁻³5⁻⁴ = 0.00034262590996353903 [ph] Gauss
julia> footlambert(English) # fc
τ⁻¹2 = 0.3183098861837907 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.bril
— Constant
bril(U::UnitSystem) = centi*nano*lambert(U)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻⁴2⁻¹⁰5⁻⁷ = 1.0933650486(13) × 10⁻⁴³) [ħ¹³𝘤⁻²⁸μ₀⁻²mₑ⁻¹⁸Mᵤ⁻¹Kcd⁻⁵ϕ¹³λ⁻²g₀¹⁶] Unified
Reference unit of luminance
(nt).
julia> bril(Engineering) # nt
τ⁻¹2⁻⁶5⁻⁷ = 3.183098861837907×10⁻⁸ [nt] Engineering
julia> bril(MetricDegree) # lm⋅m⁻²deg⁻²
τ⋅2⁻¹²3⁻⁴5⁻⁹ = 9.69627362219072×10⁻¹² [m⁻²lm⋅deg⁻²] MetricDegree
julia> bril(MetricGradian) # lm⋅m⁻²gon⁻²
τ⋅2⁻¹⁴5⁻¹¹ = 7.853981633974482×10⁻¹² [m⁻²lm⋅gon⁻²] MetricGradian
julia> bril(CGS) # sb
τ⁻¹2⁻¹⁰5⁻¹¹ = 3.1830988618379067×10⁻¹² [ph] Gauss
julia> bril(English) # fc
ft²τ⁻¹2⁻⁶5⁻⁷ = 2.9571956088528156×10⁻⁹ [ft⁻²lm⋅rad⁻²] English
MeasureSystems.talbot
— Constant
talbot(U::UnitSystem) = luminousenergy(𝟏,U,Metric)
luminousenergy : [TJ], [TJ], [TJ], [TJ], [TJ]
TJ⋅(𝘩⁻¹𝘤⁻¹Kcd⁻¹R∞⁻¹α²2⁻¹ = 1.78828352208(55) × 10¹⁰) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹Mᵤ⁻¹ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Common unit of luminousenergy
(lm⋅s).
julia> talbot(Metric) # lm⋅s
𝟏 = 1.0 [s⋅lm] Metric
MeasureSystems.lumerg
— Constant
lumerg(U::UnitSystem) = luminousenergy(𝟏𝟎^-7,U,Metric)
luminousenergy : [TJ], [TJ], [TJ], [TJ], [TJ]
TJ⋅(𝘩⁻¹𝘤⁻¹Kcd⁻¹R∞⁻¹α²2⁻⁸5⁻⁷ = 1788.28352208(55)) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹Mᵤ⁻¹ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Reference unit of luminousenergy
(lm⋅s).
julia> lumerg(CGS) # lm⋅s
2⁻⁷5⁻⁷ = 1.0×10⁻⁷ [s⋅lm] Gauss
Specialized Units
MeasureSystems.neper
— Function
neper(U::UnitSystem) = U(𝟏,log(𝟙))
Logarithmic unit expressing the ratio of a dimensional quanty.
julia> neper(Metric)
𝟏 = 1.0 [log(𝟙)] Metric
julia> exp(neper(Metric))
exp(𝟙) = 2.718281828459045 [𝟙] Metric
MeasureSystems.bel
— Function
bel(U::UnitSystem) = U(𝟏,log10(𝟙))
Logarithmic unit expressing the ratio of a dimensional quanty.
julia> bel(Metric)
𝟏 = 1.0 [log10(𝟙)] Metric
julia> exp10(bel(Metric))
exp10(𝟙) = 10.0 [𝟙] Metric
MeasureSystems.decibel
— Function
decibel(U::UnitSystem) = U(𝟏,logdb(𝟙))
Logarithmic unit expressing the ratio of a dimensional quanty.
julia> decibel(Metric)
𝟏 = 1.0 [dB(𝟙)] Metric
julia> expdb(decibel(Metric))
1.2589254117941673^(𝟙) = 1.2589254117941673 [𝟙] Metric
MeasureSystems.hertz
— Constant
hertz(U::UnitSystem) = 𝟏/second(U)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²τ⁻¹2⁻¹ = 1.28808866819(39) × 10⁻²¹) [ħ⁷ᐟ²𝘤⁻¹³ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁵Kcd⁻¹ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
Metric unit of frequency
(s⁻¹).
julia> hertz(Engineering) # rad⋅s⁻¹
𝟏 = 1.0 [Hz] Engineering
julia> hertz(IAU) # D⁻¹
2⁷3³5² = 86400.0 [D⁻¹] IAU☉
MeasureSystems.apm
— Constant
apm(U::UnitSystem) = 𝟏/minute(U)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²τ⁻¹2⁻³3⁻¹5⁻¹ = 2.14681444698(66) × 10⁻²³) [ħ⁷ᐟ²𝘤⁻¹³ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁵Kcd⁻¹ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
Actions per minute apm
unit of
frequency
(s⁻¹).
julia> apm(Metric) # s⁻¹
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [Hz] Metric
julia> apm(MPH) # h⁻¹
2²3⋅5 = 60.0 [h⁻¹] MPH
julia> apm(IAU) # D⁻¹
2⁵3²5 = 1440.0 [D⁻¹] IAU☉
MeasureSystems.rpm
— Constant
rpm(U::UnitSystem) = turn(U)/minute(U)
angularfrequency : [T⁻¹A], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹A⋅(𝘤⁻¹R∞⁻¹α²2⁻³3⁻¹5⁻¹ = 1.34888329905(41) × 10⁻²²) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻³ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Revolutions per minute rpm
unit of
angularfrequency
(rad⋅s⁻¹).
julia> rpm(Engineering) # rad⋅s⁻¹
τ⋅2⁻²3⁻¹5⁻¹ = 0.10471975511965977 [s⁻¹rad] Engineering
julia> rpm(MetricGradian) # gon⋅s⁻¹
2²3⁻¹5 = 6.666666666666666 [s⁻¹gon] MetricGradian
julia> rpm(MetricDegree) # deg⋅s⁻¹
2⋅3 = 6.0 [s⁻¹deg] MetricDegree
julia> rpm(MetricArcminute) # amin⋅s⁻¹
2³3²5 = 360.0 [s⁻¹amin] MetricArcminute
julia> rpm(MetricArcsecond) # asec⋅s⁻¹
2⁵3³5² = 21600.0 [s⁻¹asec] MetricArcsecond
julia> rpm(MPH) # rad⋅h⁻¹
τ⋅2²3⋅5 = 376.99111843077515 [h⁻¹] MPH
julia> rpm(IAU) # rad⋅D⁻¹
τ⋅2⁵3²5 = 9047.786842338604 [D⁻¹] IAU☉
MeasureSystems.kayser
— Constant
kayser(U::UnitSystem) = wavenumber(𝟏,U,Gauss)
wavenumber : [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
L⁻¹⋅(R∞⁻¹α²τ⁻¹2⋅5² = 3.8615926796(12) × 10⁻¹¹) [ħ⁵ᐟ²𝘤⁻¹¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁴Kcd⁻¹ϕ⁵ᐟ²λ⁻¹ᐟ²g₀³] Unified
Metric unit of wavenumber
or
curvature (m⁻¹ or ft⁻¹).
julia> kayser(Metric) # m⁻¹
2²5² = 100.0 [m⁻¹] Metric
julia> kayser(CGS) # cm⁻¹
𝟏 = 1.0 [cm⁻¹] Gauss
julia> kayser(English) # ft⁻¹
ft⋅2²5² = 30.48 [ft⁻¹] English
MeasureSystems.diopter
— Constant
diopter(U::UnitSystem) = angularwavenumber(𝟏,U,Metric)
angularwavenumber : [L⁻¹A], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
L⁻¹A⋅(R∞⁻¹α²τ⁻¹2⁻¹ = 3.8615926796(12) × 10⁻¹³) [ħ³ᐟ²𝘤⁻³ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ³ᐟ²λ⁻¹ᐟ²g₀] Unified
Metric unit of angularwavenumber
or
curvature (m⁻¹ or ft⁻¹).
julia> diopter(Metric) # m⁻¹
𝟏 = 1.0 [m⁻¹] Metric
julia> diopter(CGS) # cm⁻¹
2⁻²5⁻² = 0.010000000000000002 [cm⁻¹] Gauss
julia> diopter(English) # ft⁻¹
ft = 0.3048 [ft⁻¹rad] English
MeasureSystems.rayleigh
— Constant
rayleigh(U::UnitSystem) = photonirradiance(𝟏𝟎^10,U,Metric)
photonirradiance : [L⁻²T], [L⁻²T], [L⁻²T], [L⁻²T], [L⁻²T]
L⁻²T⋅(𝘤⋅R∞⁻¹α²τ⁻¹2⁹5¹⁰ = 1.15767636121(35) × 10⁶) [ħ³ᐟ²𝘤⁻⁹ᐟ²μ₀⁻¹ᐟ²mₑ⁻³Kcd⁻¹ϕ³ᐟ²λ⁻¹ᐟ²g₀²] Unified
Common unit of photonirradiance
(Hz⋅m⁻²).
julia> rayleigh(Metric) # Hz⋅m⁻²
2¹⁰5¹⁰ = 1.0×10¹⁰ [Hz⋅m⁻²] Metric
julia> rayleigh(CGS) # Hz⋅cm⁻²
2⁶5⁶ = 1.0×10⁶ [Hz⋅m⁻²] Gauss
julia> rayleigh(English) # Hz⋅ft⁻²
ft²2¹⁰5¹⁰ = 9.290304000000001×10⁸ [ft⁻²s] English
MeasureSystems.flick
— Constant
flick(U::UnitSystem) = radiance(𝟏𝟎^10,U,Metric)/length(𝟏,U,Metric)
nonstandard : [FL⁻²T⁻¹A⁻²], [FL⁻²T⁻¹], [ML⁻¹T⁻³], [ML⁻¹T⁻³], [ML⁻¹T⁻³]
FL⁻²T⁻¹A⁻²⋅(𝘩⁻¹𝘤⁻²R∞⁻⁵α¹⁰τ⁻⁴2⁵5¹⁰ = 9.059719376(14) × 10⁻³⁶) [ħ³¹ᐟ²𝘤⁻⁶⁷ᐟ²μ₀⁻⁵ᐟ²mₑ⁻²³Kcd⁻⁶ϕ³¹ᐟ²λ⁻⁵ᐟ²g₀¹⁹] Unified
Lockheed Martin unit of radiance
per
length
(W⋅m⁻³⋅rad⁻²).
julia> flick(Metric) # W⋅m⁻³
2¹⁰5¹⁰ = 1.0×10¹⁰ [W⋅m⁻³] Metric
julia> flick(CGS) # erg⋅s⁻¹⋅mL⁻¹
2¹¹5¹¹ = 1.0×10¹¹ [erg⋅s⁻¹mL⁻¹] Gauss
julia> flick(MetricSpatian) # W⋅m⁻³⋅ς⁻²
τ⋅2¹¹5¹⁰ = 1.2566370614359172×10¹¹ [W⋅m⁻³⋅ς⁻²] MetricSpatian
MeasureSystems.gforce
— Constant
gforce(U::UnitSystem) = specificforce(𝟏,U,English)
specificforce : [FM⁻¹], [LT⁻²], [LT⁻²], [LT⁻²], [LT⁻²]
FM⁻¹⋅(𝘤⁻²R∞⁻¹α²g₀⋅τ⁻¹2⁻¹ = 4.2135265250(13) × 10⁻²⁹) [ħ⁹ᐟ²𝘤⁻¹⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁶Kcd⁻¹ϕ⁹ᐟ²λ⁻¹ᐟ²αL⋅g₀⁵] Unified
Standard gravity specificforce
g₀
at geodetic reference latitude (m⋅s⁻²
or ft⋅s⁻²).
julia> gforce(CGS) # gal
g₀⋅2²5² = 980.665 [gal] Gauss
julia> gforce(British) # ft⋅s⁻²
g₀⋅ft⁻¹ = 32.17404855643044 [ft⋅s⁻²] British
julia> gforce(English) # lbf⋅lbm⁻¹
𝟏 = 1.0 [g₀] English
MeasureSystems.galileo
— Constant
galileo(U::UnitSystem) = specificforce(𝟏,U,Gauss)
specificforce : [FM⁻¹], [LT⁻²], [LT⁻²], [LT⁻²], [LT⁻²]
FM⁻¹⋅(𝘤⁻²R∞⁻¹α²τ⁻¹2⁻³5⁻² = 4.2966013114(13) × 10⁻³²) [ħ⁹ᐟ²𝘤⁻¹⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁶Kcd⁻¹ϕ⁹ᐟ²λ⁻¹ᐟ²αL⋅g₀⁵] Unified
Metric unit of specificforce
used in
gravimetry (m⋅s⁻² or ft⋅s⁻²).
julia> galileo(Metric) # m⋅s⁻²
2⁻²5⁻² = 0.010000000000000002 [m⋅s⁻²] Metric
julia> galileo(CGS) # gal
𝟏 = 1.0 [gal] Gauss
julia> galileo(English) # lbf⋅lbm⁻¹
g₀⁻¹2⁻²5⁻² = 0.0010197162129779284 [g₀] English
MeasureSystems.eotvos
— Constant
eotvos(U::UnitSystem) = specificforce(nano,U,Gauss)/length(𝟏,U,Gauss)
nonstandard : [FM⁻¹L⁻¹], [T⁻²], [T⁻²], [T⁻²], [T⁻²]
FM⁻¹L⁻¹⋅(𝘤⁻²R∞⁻²α⁴τ⁻²2⁻¹¹5⁻⁹ = 1.6591724171(10) × 10⁻⁵¹) [ħ⁷𝘤⁻¹³μ₀⁻¹mₑ⁻¹⁰Kcd⁻²ϕ⁷λ⁻¹αL⋅g₀⁸] Unified
Metric unit of specificforce
per
length
used in gravimetry (s⁻² or
gal⋅cm⁻¹).
julia> eotvos(Metric) # s⁻²
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [Hz⋅s⁻¹] Metric
julia> eotvos(CGS) # gal⋅cm⁻¹
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [gal⋅cm⁻¹] Gauss
julia> eotvos(English) # lbf⋅lbm⁻¹ft⁻¹
g₀⁻¹ft⋅2⁻⁹5⁻⁹ = 3.108095017156726×10⁻¹¹ [lbf⋅lbm⁻¹ft⁻¹] English
MeasureSystems.darcy
— Constant
darcy(U::UnitSystem) = area(milli/atm,U,Gauss)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴atm⁻¹τ²2⁻⁵5⁻⁷ = 6.6183611583(41) × 10¹²) [ħ⁻⁵𝘤¹¹μ₀⋅mₑ⁸Kcd²ϕ⁻⁵λ⋅g₀⁻⁶] Unified
Metric unit of permeability (m² or ft²).
julia> darcy(Metric) # m²
atm⁻¹2⁻⁷5⁻⁷ = 9.869232667160128×10⁻¹³ [m²] Metric
julia> darcy(CGS) # cm²
atm⁻¹2⁻³5⁻³ = 9.86923266716013×10⁻⁹ [cm²] Gauss
julia> darcy(English) # ft²
ft⁻²atm⁻¹2⁻⁷5⁻⁷ = 1.0623153631097675×10⁻¹¹ [ft²] English
MeasureSystems.poise
— Constant
poise(U::UnitSystem) = viscosity(𝟏,U,Gauss)
viscosity : [FL⁻²T], [FL⁻²T], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹]
FL⁻²T⋅(𝘩⁻¹R∞⁻³α⁶τ⁻²2⁻⁴5⁻¹ = 5.4603845163(50) × 10⁻⁵) [ħ¹³ᐟ²𝘤⁻²⁵ᐟ²μ₀⁻³ᐟ²mₑ⁻⁹Kcd⁻²ϕ¹³ᐟ²λ⁻³ᐟ²g₀⁷] Unified
Metric unit of viscosity
(kg⋅m⁻¹⋅s⁻¹
or lb⋅s⋅ft⁻²).
julia> poise(Metric) # kg⋅m⁻¹⋅s⁻¹
2⁻¹5⁻¹ = 0.1 [Pa⋅s] Metric
julia> poise(CGS) # g⋅cm⁻¹⋅s⁻¹
𝟏 = 1.0 [P] Gauss
julia> poise(English) # lb⋅s⋅ft⁻²
g₀⁻¹ft²lb⁻¹2⁻¹5⁻¹ = 0.002088543423315013 [lbf⋅ft⁻²s] English
MeasureSystems.reyn
— Constant
reyn(U::UnitSystem) = viscosity(𝟏,U,IPS)
viscosity : [FL⁻²T], [FL⁻²T], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹]
FL⁻²T⋅(𝘩⁻¹R∞⁻³α⁶g₀⋅ft⁻²lb⋅τ⁻²2⋅3² = 3.7648025968(35)) [ħ¹³ᐟ²𝘤⁻²⁵ᐟ²μ₀⁻³ᐟ²mₑ⁻⁹Kcd⁻²ϕ¹³ᐟ²λ⁻³ᐟ²g₀⁷] Unified
IPS unit of viscosity
named after
Reynolds (kg⋅m⁻¹⋅s⁻¹ or lb⋅s⋅ft⁻²).
julia> reyn(Metric) # kg⋅m⁻¹⋅s⁻¹
g₀⋅ft⁻²lb⋅2⁴3² = 6894.75729316836 [Pa⋅s] Metric
julia> reyn(CGS) # g⋅cm⁻¹⋅s⁻¹
g₀⋅ft⁻²lb⋅2⁵3²5 = 68947.5729316836 [P] Gauss
julia> reyn(English) # lb⋅s⋅ft⁻²
2⁴3² = 144.0 [lbf⋅ft⁻²s] English
MeasureSystems.stokes
— Constant
stokes(U::UnitSystem) = diffusivity(𝟏,U,Gauss)
diffusivity : [L²T⁻¹], [L²T⁻¹], [L²T⁻¹], [L²T⁻¹], [L²T⁻¹]
L²T⁻¹⋅(𝘤⁻¹R∞⋅α⁻²τ⋅2⁻³5⁻⁴ = 0.86379927371(26)) [ħ⁻³ᐟ²𝘤⁹ᐟ²μ₀¹ᐟ²mₑ³Kcd⋅ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified
Metric unit of diffusivity
(m²⋅s⁻¹ or
ft²⋅s⁻¹).
julia> stokes(Metric) # m²⋅s⁻¹
2⁻⁴5⁻⁴ = 0.0001 [m²s⁻¹] Metric
julia> stokes(CGS) # cm²⋅s⁻¹
𝟏 = 1.0 [St] Gauss
julia> stokes(English) # ft²⋅s⁻¹
ft⁻²2⁻⁴5⁻⁴ = 0.0010763910416709721 [ft²s⁻¹] English
MeasureSystems.rayl
— Constant
rayl(U::UnitSystem) = specificimpedance(𝟏,U,Metric)
specificimpedance : [FL⁻³T], [FL⁻³T], [ML⁻²T⁻¹], [ML⁻²T⁻¹], [ML⁻²T⁻¹]
FL⁻³T⋅(𝘩⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 2.1085780876(26) × 10⁻¹⁶) [ħ⁹𝘤⁻¹⁸μ₀⁻²mₑ⁻¹³Kcd⁻³ϕ⁹λ⁻²g₀¹⁰] Unified
Metric unit of specificimpedance
(kg⋅m⁻²⋅s⁻¹ or lb⋅s⋅ft⁻³).
julia> rayl(Metric) # kg⋅m⁻²⋅s⁻¹
𝟏 = 1.0 [kg⋅m⁻²s⁻¹] Metric
julia> rayl(CGS) # g⋅cm⁻²⋅s⁻¹
2⁻¹5⁻¹ = 0.1 [g⋅cm⁻²s⁻¹] Gauss
julia> rayl(English) # lb⋅s⋅ft⁻³
g₀⁻¹ft³lb⁻¹ = 0.00636588035426416 [lbf⋅ft⁻³s] English
MeasureSystems.mpge
— Constant
mpge(U::UnitSystem) = mile(U)/gasgallon(U)
nonstandard : [F⁻¹], [F⁻¹], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²]
F⁻¹⋅(𝘩⋅𝘤⋅R∞²α⁻⁴ft⋅lb⁻¹Ωᵢₜ⋅Vᵢₜ⁻²τ⋅2⁻²5⁻⁷11⋅19⁻¹43 = 2.8368673134(17) × 10⁻⁶) [ħ⁻⁵𝘤⁸μ₀⋅mₑ⁶Kcd⋅ϕ⁻⁵λ⋅g₀⁻⁵] Unified
Equivalent mile
per
gasgallon
reference unit of
length
per energy
(N⁻¹ or
lb⁻¹).
julia> mpge(Metric) # N⁻¹
ft⋅lb⁻¹Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁴5⁻⁷11⋅19⁻¹43 = 1.3380584481180184×10⁻⁵ [N⁻¹] Metric
julia> mpge(CGS) # dyn⁻¹
ft⋅lb⁻¹Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁹5⁻¹²11⋅19⁻¹43 = 1.3380584481180183×10⁻¹⁰ [dyn⁻¹] Gauss
julia> mpge(English) # lb⁻¹
g₀⋅ft⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁴5⁻⁷11⋅19⁻¹43 = 5.95198051140049×10⁻⁵ [lbf⁻¹] English
MeasureSystems.langley
— Constant
langley(U::UnitSystem) = calorie(U)/(centi*meter(U))^2
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
FL⁻¹⋅(𝘩⁻¹𝘤⁻¹R∞⁻³α⁶Ωᵢₜ⁻¹Vᵢₜ²τ⁻²2³3²5⁵43⁻¹ = 7.6256740434(70) × 10⁻⁸) [ħ¹⁵ᐟ²𝘤⁻²⁷ᐟ²μ₀⁻³ᐟ²mₑ⁻¹⁰Kcd⁻²ϕ¹⁵ᐟ²λ⁻³ᐟ²g₀⁸] Unified
Solar radiation unit (kg⋅s⁻² or lb⋅ft⁻¹).
julia> langley(Metric) # kg⋅s⁻²
Ωᵢₜ⁻¹Vᵢₜ²2⁶3²5⁵43⁻¹ = 41867.37323211056 [N⋅m⁻¹] Metric
julia> langley(CGS) # g⋅s⁻²
Ωᵢₜ⁻¹Vᵢₜ²2⁹3²5⁸43⁻¹ = 4.186737323211056×10⁷ [dyn⋅cm⁻¹] Gauss
julia> langley(English) # lb⋅ft⁻¹
g₀⁻¹ft⋅lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁶3²5⁵43⁻¹ = 2868.8263456495906 [lbf⋅ft⁻¹] English
MeasureSystems.jansky
— Constant
jansky(U::UnitSystem) = fluence(𝟏𝟎^-26,U,Metric)
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
FL⁻¹⋅(𝘩⁻¹𝘤⁻¹R∞⁻³α⁶τ⁻²2⁻²⁹5⁻²⁶ = 1.8213882206(17) × 10⁻³⁸) [ħ¹⁵ᐟ²𝘤⁻²⁷ᐟ²μ₀⁻³ᐟ²mₑ⁻¹⁰Kcd⁻²ϕ¹⁵ᐟ²λ⁻³ᐟ²g₀⁸] Unified
Reference unit of spectral irradiance (kg⋅s⁻² or lb⋅ft⁻¹).
julia> jansky(Metric) # kg⋅s⁻²
2⁻²⁶5⁻²⁶ = 1.0×10⁻²⁶ [N⋅m⁻¹] Metric
julia> jansky(CGS) # g⋅s⁻²
2⁻²³5⁻²³ = 1.0×10⁻²³ [dyn⋅cm⁻¹] Gauss
julia> jansky(English) # lb⋅ft⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻²⁶5⁻²⁶ = 6.852176585679177×10⁻²⁸ [lbf⋅ft⁻¹] English
MeasureSystems.solarflux
— Constant
solarflux(U::UnitSystem) = hecto^2*jansky(U)
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
FL⁻¹⋅(𝘩⁻¹𝘤⁻¹R∞⁻³α⁶τ⁻²2⁻²⁵5⁻²² = 1.8213882206(17) × 10⁻³⁴) [ħ¹⁵ᐟ²𝘤⁻²⁷ᐟ²μ₀⁻³ᐟ²mₑ⁻¹⁰Kcd⁻²ϕ¹⁵ᐟ²λ⁻³ᐟ²g₀⁸] Unified
Reference unit of spectral irradiance (kg⋅s⁻² or lb⋅ft⁻¹).
julia> solarflux(Metric) # kg⋅s⁻²
2⁻²²5⁻²² = 1.0×10⁻²² [N⋅m⁻¹] Metric
julia> solarflux(CGS) # g⋅s⁻²
2⁻¹⁹5⁻¹⁹ = 1.0×10⁻¹⁹ [dyn⋅cm⁻¹] Gauss
julia> solarflux(English) # lb⋅ft⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻²²5⁻²² = 6.852176585679177×10⁻²⁴ [lbf⋅ft⁻¹] English
MeasureSystems.curie
— Constant
curie(U::UnitSystem) = frequency(𝟏,U,Metric)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅37 [ħ⁷ᐟ²𝘤⁻¹³ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁵Kcd⁻¹ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
Reference unit of radioactivity (Bq or s⁻¹).
julia> curie(Metric) # Bq
2⁹5⁹⋅37 = 3.7×10¹⁰ [Hz] Metric
julia> curie(IAU) # D⁻¹
2¹⁶3³5¹¹⋅37 = 3.1968×10¹⁵ [D⁻¹] IAU☉
MeasureSystems.gray
— Constant
gray(U::UnitSystem) = energy(𝟏,U,Metric)/mass(𝟏,U,Metric)
specificenergy : [FM⁻¹L], [L²T⁻²], [L²T⁻²], [L²T⁻²], [L²T⁻²]
FM⁻¹L⋅(𝘤⁻² = 1.1126500560536183×10⁻¹⁷) [ħ²𝘤⁻²mₑ⁻²ϕ²αL⋅g₀²] Unified
Metric unit of radioactivity (Gy or m²⋅s⁻²).
julia> gray(Metric) # Gy
𝟏 = 1.0 [J⋅kg⁻¹] Metric
MeasureSystems.roentgen
— Constant
roentgen(U::UnitSystem) = chargedensity(𝟏,U,ESU)/density(Constant(1.293),U,Metric)
exposure : [M⁻¹Q], [F⁻¹LT⁻²Q], [M⁻¹Q], [M⁻¹ᐟ²L¹ᐟ²], [M⁻¹ᐟ²L³ᐟ²T⁻¹]
M⁻¹Q/1.293 [ħ⁻²𝘤⁴μ₀¹ᐟ²mₑ⁵ᐟ²Kcd¹ᐟ²ϕ⁻⁵ᐟ²λ⁻¹ᐟ²αL⋅g₀⁻²] Unified
Legacy unit of ionisation exposure
(C⋅kg⁻¹ or C⋅lb⁻¹).
julia> roentgen(Metric) # C⋅kg⁻¹
𝘤⁻¹2⁵5⁵/1.293 = 0.0002579768717696458 [kg⁻¹C] Metric
julia> roentgen(English) # C⋅lb⁻¹
𝘤⁻¹lb⋅2⁵5⁵/1.293 = 0.00011701634067117975 [lbm⁻¹C] English
Units Index
-
MeasureSystems.abampere
-
MeasureSystems.abcoulomb
-
MeasureSystems.abfarad
-
MeasureSystems.abhenry
-
MeasureSystems.abmho
-
MeasureSystems.abohm
-
MeasureSystems.abvolt
-
MeasureSystems.acre
-
MeasureSystems.admiraltymile
-
MeasureSystems.amagat
-
MeasureSystems.ampere
-
MeasureSystems.angstrom
-
MeasureSystems.apm
-
MeasureSystems.apostilb
-
MeasureSystems.arcminute
-
MeasureSystems.arcsecond
-
MeasureSystems.astronomicalunit
-
MeasureSystems.atmosphere
-
MeasureSystems.bar
-
MeasureSystems.barn
-
MeasureSystems.barye
-
MeasureSystems.boilerhorsepower
-
MeasureSystems.boiling
-
MeasureSystems.bradian
-
MeasureSystems.bril
-
MeasureSystems.bubnoff
-
MeasureSystems.byte
-
MeasureSystems.calorie
-
MeasureSystems.candela
-
MeasureSystems.celsius
-
MeasureSystems.centi
-
MeasureSystems.coulomb
-
MeasureSystems.cup
-
MeasureSystems.curie
-
MeasureSystems.darcy
-
MeasureSystems.day
-
MeasureSystems.degree
-
MeasureSystems.diopter
-
MeasureSystems.dyne
-
MeasureSystems.earthcalorie
-
MeasureSystems.earthcoulomb
-
MeasureSystems.earthgram
-
MeasureSystems.earthmeter
-
MeasureSystems.earthmole
-
MeasureSystems.electricalhorsepower
-
MeasureSystems.electronvolt
-
MeasureSystems.eotvos
-
MeasureSystems.erg
-
MeasureSystems.fahrenheit
-
MeasureSystems.farad
-
MeasureSystems.flick
-
MeasureSystems.fluidounce
-
MeasureSystems.foot
-
MeasureSystems.footcandle
-
MeasureSystems.footlambert
-
MeasureSystems.footpound
-
MeasureSystems.fpm
-
MeasureSystems.fps
-
MeasureSystems.galileo
-
MeasureSystems.gallon
-
MeasureSystems.gasgallon
-
MeasureSystems.gauss
-
MeasureSystems.gforce
-
MeasureSystems.gilbert
-
MeasureSystems.gradian
-
MeasureSystems.grain
-
MeasureSystems.gram
-
MeasureSystems.gray
-
MeasureSystems.hectare
-
MeasureSystems.henry
-
MeasureSystems.hertz
-
MeasureSystems.horsepower
-
MeasureSystems.horsepowermetric
-
MeasureSystems.horsepowerwatt
-
MeasureSystems.hour
-
MeasureSystems.hyl
-
MeasureSystems.inch
-
MeasureSystems.inchmercury
-
MeasureSystems.ips
-
MeasureSystems.jansky
-
MeasureSystems.joule
-
MeasureSystems.jupiterdistance
-
MeasureSystems.katal
-
MeasureSystems.kayser
-
MeasureSystems.kelvin
-
MeasureSystems.kilo
-
MeasureSystems.kilocalorie
-
MeasureSystems.kilogram
-
MeasureSystems.kilopond
-
MeasureSystems.kmh
-
MeasureSystems.knot
-
MeasureSystems.lambert
-
MeasureSystems.langley
-
MeasureSystems.lightyear
-
MeasureSystems.liter
-
MeasureSystems.lumen
-
MeasureSystems.lumerg
-
MeasureSystems.lunardistance
-
MeasureSystems.lux
-
MeasureSystems.maxwell
-
MeasureSystems.meancalorie
-
MeasureSystems.meridianmile
-
MeasureSystems.meter
-
MeasureSystems.mile
-
MeasureSystems.minute
-
MeasureSystems.mole
-
MeasureSystems.mpge
-
MeasureSystems.mph
-
MeasureSystems.mps
-
MeasureSystems.ms
-
MeasureSystems.nauticalmile
-
MeasureSystems.newton
-
MeasureSystems.nit
-
MeasureSystems.oersted
-
MeasureSystems.ohm
-
MeasureSystems.ounce
-
MeasureSystems.parsec
-
MeasureSystems.pascal
-
MeasureSystems.phot
-
MeasureSystems.pint
-
MeasureSystems.poise
-
MeasureSystems.pound
-
MeasureSystems.poundal
-
MeasureSystems.poundforce
-
MeasureSystems.poundmole
-
MeasureSystems.psi
-
MeasureSystems.quart
-
MeasureSystems.radian
-
MeasureSystems.rankine
-
MeasureSystems.rayl
-
MeasureSystems.rayleigh
-
MeasureSystems.reyn
-
MeasureSystems.roentgen
-
MeasureSystems.rpm
-
MeasureSystems.sealevel
-
MeasureSystems.second
-
MeasureSystems.siemens
-
MeasureSystems.slinch
-
MeasureSystems.slinchmole
-
MeasureSystems.slug
-
MeasureSystems.slugmole
-
MeasureSystems.solarflux
-
MeasureSystems.spat
-
MeasureSystems.spatian
-
MeasureSystems.squaredegree
-
MeasureSystems.statampere
-
MeasureSystems.statcoulomb
-
MeasureSystems.statfarad
-
MeasureSystems.stathenry
-
MeasureSystems.statmho
-
MeasureSystems.statohm
-
MeasureSystems.stattesla
-
MeasureSystems.statutemile
-
MeasureSystems.statvolt
-
MeasureSystems.statweber
-
MeasureSystems.steradian
-
MeasureSystems.stilb
-
MeasureSystems.stokes
-
MeasureSystems.surveyacre
-
MeasureSystems.surveyfoot
-
MeasureSystems.tablespoon
-
MeasureSystems.talbot
-
MeasureSystems.teaspoon
-
MeasureSystems.technicalatmosphere
-
MeasureSystems.tesla
-
MeasureSystems.thermalunit
-
MeasureSystems.ton
-
MeasureSystems.tonne
-
MeasureSystems.tonsrefrigeration
-
MeasureSystems.tontnt
-
MeasureSystems.torr
-
MeasureSystems.turn
-
MeasureSystems.volt
-
MeasureSystems.watt
-
MeasureSystems.weber
-
MeasureSystems.yard
-
MeasureSystems.year
-
MeasureSystems.bel
-
MeasureSystems.decibel
-
MeasureSystems.neper
-
MeasureSystems.British
-
MeasureSystems.CODATA
-
MeasureSystems.Conventional
-
MeasureSystems.Cosmological
-
MeasureSystems.CosmologicalQuantum
-
MeasureSystems.EMU
-
MeasureSystems.ESU
-
MeasureSystems.Electronic
-
MeasureSystems.Engineering
-
MeasureSystems.English
-
MeasureSystems.FFF
-
MeasureSystems.FPS
-
MeasureSystems.Gauss
-
MeasureSystems.Gravitational
-
MeasureSystems.Hartree
-
MeasureSystems.Hubble
-
MeasureSystems.IAU
-
MeasureSystems.IAUE
-
MeasureSystems.IAUJ
-
MeasureSystems.IPS
-
MeasureSystems.International
-
MeasureSystems.InternationalMean
-
MeasureSystems.KKH
-
MeasureSystems.LorentzHeaviside
-
MeasureSystems.MPH
-
MeasureSystems.MTS
-
MeasureSystems.Meridian
-
MeasureSystems.Metric
-
MeasureSystems.Natural
-
MeasureSystems.NaturalGauss
-
MeasureSystems.Nautical
-
MeasureSystems.Planck
-
MeasureSystems.PlanckGauss
-
MeasureSystems.QCD
-
MeasureSystems.QCDGauss
-
MeasureSystems.QCDoriginal
-
MeasureSystems.Rydberg
-
MeasureSystems.SI1976
-
MeasureSystems.SI2019
-
MeasureSystems.Schrodinger
-
MeasureSystems.Stoney
-
MeasureSystems.Survey