The UnitSystem
Physical unit system constants (Metric, English, Natural, etc...)
By default, UnitSystems
provides a modern
unified re-interpretation of various historical unit
systems which were previously incompatible. In order to
make each UnitSystem
consistently compatible
with each other, a few convenience assumptions are made.
Specifically, it is assumed that all default modern unit
systems share the same common Universe
of
dimensionless constants, although this can be optionally
changed. Therefore, the philosophy is to characterize
differences among UnitSystem
instances by
means of dimensional constants. As a result, all the
defaults are ideal modern variants of these historical unit
systems based on a common underlying Universe
,
which are completely consistent and compatible with each
other. These default UnitSystem
values are to
be taken as a newly defined mutually-compatible recommended
standard, verified to be consistent and coherent.
-
MeasureSystems.British
-
MeasureSystems.CODATA
-
MeasureSystems.Conventional
-
MeasureSystems.Cosmological
-
MeasureSystems.CosmologicalQuantum
-
MeasureSystems.EMU
-
MeasureSystems.ESU
-
MeasureSystems.Electronic
-
MeasureSystems.Engineering
-
MeasureSystems.English
-
MeasureSystems.FFF
-
MeasureSystems.FPS
-
MeasureSystems.Gauss
-
MeasureSystems.Gravitational
-
MeasureSystems.Hartree
-
MeasureSystems.Hubble
-
MeasureSystems.IAU
-
MeasureSystems.IAUE
-
MeasureSystems.IAUJ
-
MeasureSystems.IPS
-
MeasureSystems.International
-
MeasureSystems.InternationalMean
-
MeasureSystems.KKH
-
MeasureSystems.LorentzHeaviside
-
MeasureSystems.MPH
-
MeasureSystems.MTS
-
MeasureSystems.Meridian
-
MeasureSystems.Metric
-
MeasureSystems.Natural
-
MeasureSystems.NaturalGauss
-
MeasureSystems.Nautical
-
MeasureSystems.Planck
-
MeasureSystems.PlanckGauss
-
MeasureSystems.QCD
-
MeasureSystems.QCDGauss
-
MeasureSystems.QCDoriginal
-
MeasureSystems.Rydberg
-
MeasureSystems.SI1976
-
MeasureSystems.SI2019
-
MeasureSystems.Schrodinger
-
MeasureSystems.Stoney
-
MeasureSystems.Survey
Metric SI Unit Systems
In the Systeme International d'Unites (the SI units) the
UnitSystem
constants are derived from the most
accurate possible physical measurements and a few exactly
defined constants. Exact values are the
avogadro
number, boltzmann
constant, planck
constant,
lightspeed
definition, and elementary
charge
definition.
Construction of UnitSystem
instances based
on specifying the the constants molarmass
, the
vacuumpermeability
, and the
molargas
along with some other options is
facilitated by MetricSystem
. This construction
helps characterize the differences between
MeasureSystems.Metric
— Constant
Metric = MetricSystem(milli,𝟐*τ/𝟏𝟎^7)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Standard Metric
system based on exact
molarmass
and
vacuumpermeability
.
julia> boltzmann(Metric) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 1.38064899953(43) × 10⁻²³ [J⋅K⁻¹] Metric
julia> planckreduced(Metric) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [J⋅s] Metric
julia> lightspeed(Metric) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Metric
julia> vacuumpermeability(Metric) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [H⋅m⁻¹] Metric
julia> electronmass(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] Metric
julia> molarmass(Metric) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Metric
julia> luminousefficacy(Metric) # lm⋅W⁻¹
Kcd = 683.01969009009 [lm⋅W⁻¹] Metric
MeasureSystems.SI2019
— Constant
SI2019 = MetricSystem(Mᵤ,μ₀)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Systeme International d'Unites based on
approximate molarmass
and
vacuumpermeability
.
julia> boltzmann(SI2019) # J⋅K⁻¹
kB = 1.380649×10⁻²³ [J⋅K⁻¹] SI2019
julia> planckreduced(SI2019) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [J⋅s] SI2019
julia> lightspeed(SI2019) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] SI2019
julia> vacuumpermeability(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅2 = 1.25663706212(19) × 10⁻⁶ [H⋅m⁻¹] SI2019
julia> electronmass(SI2019) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] SI2019
julia> molarmass(SI2019) # kg⋅mol⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 0.00099999999966(31) [kg⋅mol⁻¹] SI2019
julia> luminousefficacy(SI2019) # lm⋅W⁻¹
Kcd = 683.01969009009 [lm⋅W⁻¹] SI2019
MeasureSystems.SI1976
— Constant
SI1976 = MetricSystem(milli,𝟐*τ/𝟏𝟎^7,8.31432)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Reference UnitSystem
with universal
gas constant of 8.31432
from 1976
standard atmosphere.
julia> boltzmann(SI1976) # J⋅K⁻¹
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅8.31432 = 1.38062531722(43) × 10⁻²³ [kg⋅m²s⁻²K⁻¹] SI1976
julia> planckreduced(SI1976) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [kg⋅m²s⁻¹] SI1976
julia> lightspeed(SI1976) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] SI1976
julia> vacuumpermeability(SI1976) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [kg⋅m⋅C⁻²] SI1976
julia> electronmass(SI1976) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] SI1976
julia> molarmass(SI1976) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] SI1976
julia> luminousefficacy(SI1976) # lm⋅W⁻¹
Kcd = 683.01969009009 [kg⁻¹m⁻²s³lm] SI1976
MeasureSystems.Engineering
— Constant
Engineering = MetricSystem(milli,𝟐*τ/𝟏𝟎^7,Rᵤ,g₀)
F=F, M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=A, R=𝟙, C=𝟙
Standard Metric Engineering
system
based on kilogram and kilopond (kilogram-force)
units.
julia> boltzmann(Engineering) # kgf⋅m⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹2⁴5³ = 1.40787016925(43) × 10⁻²⁴ [kgf⋅m⋅K⁻¹] Engineering
julia> planckreduced(Engineering) # kgf⋅m⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹τ⁻¹ = 1.0753639802033891×10⁻³⁵ [kgf⋅m⋅s⋅rad⁻¹] Engineering
julia> lightspeed(Engineering) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Engineering
julia> vacuumpermeability(Engineering) # kgf⋅s²⋅C⁻²
g₀⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2814131853751459×10⁻⁷ [kgf⋅s²C⁻²] Engineering
julia> electronmass(Engineering) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] Engineering
julia> molarmass(Engineering) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Engineering
julia> luminousefficacy(Engineering) # lm⋅s⋅m⁻¹⋅kgf⁻¹
Kcd⋅g₀ = 6698.135043821981 [kgf⁻¹m⁻¹s⋅lm] Engineering
julia> gravity(Engineering) # kg⋅m⋅kgf⁻¹⋅s⁻²
g₀ = 9.80665 [kgf⁻¹kg⋅m⋅s⁻²] Engineering
Additional Metric
variants with angle
scaling include MetricTurn
,
MetricSpatian
, MetricGradian
,
MetricDegree
, MetricArcminute
,
MetricArcsecond
.
Historically, the josephson
and
klitzing
constants have been used to define
Conventional
and CODATA
variants.
MeasureSystems.Conventional
— Constant
Conventional = ConventionalSystem(RK1990,KJ2014)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Conventional electronic UnitSystem
with 1990 tuned josephson
and
klitzing
constants.
julia> josephson(Conventional) # Hz⋅V⁻¹
KJ90 = 4.835979×10¹⁴ [Hz⋅V⁻¹] Conventional
julia> klitzing(Conventional) # Ω
RK90 = 25812.807 [Ω] Conventional
julia> boltzmann(Conventional) # J⋅K⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹RK90⁻¹KJ90⁻²2⁶5³ = 1.38064872956(43) × 10⁻²³ [J⋅K⁻¹] Conventional
julia> planckreduced(Conventional) # J⋅s⋅rad⁻¹
RK90⁻¹KJ90⁻²τ⁻¹2² = 1.0545716114388567×10⁻³⁴ [J⋅s] Conventional
julia> lightspeed(Conventional) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Conventional
julia> vacuumpermeability(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅2 = 1.25663703976(19) × 10⁻⁶ [H⋅m⁻¹] Conventional
julia> electronmass(Conventional) # kg
𝘤⁻¹R∞⋅α⁻²RK90⁻¹KJ90⁻²2³ = 9.1093819203(28) × 10⁻³¹ [kg] Conventional
julia> molarmass(Conventional) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Conventional
julia> luminousefficacy(Conventional) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK90⋅KJ90²2⁻² = 683.0198236454071 [lm⋅W⁻¹] Conventional
MeasureSystems.CODATA
— Constant
CODATA = ConventionalSystem(RK2014,KJ2014,Rᵤ2014)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Reference UnitSystem
based on
Committee on Data of the International Science
Council.
julia> josephson(CODATA) # Hz⋅V⁻¹
KJ = 4.835978525(30) × 10¹⁴ [Hz⋅V⁻¹] CODATA
julia> klitzing(CODATA) # Ω
RK = 25812.8074555(59) [Ω] CODATA
julia> boltzmann(CODATA) # J⋅K⁻¹
𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹RK⁻¹KJ⁻²Rᵤ2014⋅2⁶5³ = 1.38064851(80) × 10⁻²³ [J⋅K⁻¹] CODATA
julia> planckreduced(CODATA) # J⋅s⋅rad⁻¹
RK⁻¹KJ⁻²τ⁻¹2² = 1.054571800(13) × 10⁻³⁴ [J⋅s] CODATA
julia> lightspeed(CODATA) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] CODATA
julia> vacuumpermeability(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅2 = 1.25663706194(35) × 10⁻⁶ [H⋅m⁻¹] CODATA
julia> electronmass(CODATA) # kg
𝘤⁻¹R∞⋅α⁻²RK⁻¹KJ⁻²2³ = 9.10938355(11) × 10⁻³¹ [kg] CODATA
julia> molarmass(CODATA) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] CODATA
julia> luminousefficacy(CODATA) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK⋅KJ²2⁻² = 683.0197015(85) [lm⋅W⁻¹] CODATA
Originally, the practical units where specified by
resistance
and
electricpotential
.
MeasureSystems.International
— Constant
International = ElectricSystem(Metric,Ωᵢₜ = 1.000495,Vᵢₜ = 1.00033)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
International UnitSystem
with United
States measurements of Ωᵢₜ
and
Vᵢₜ
.
julia> resistance(International,Metric) # Ω⋅Ω⁻¹
Ωᵢₜ = 1.000495 [kg⋅m⋅s⁻²C⁻²]/[kg⋅m⋅s⁻²C⁻²] International -> Metric
julia> electricpotential(International,Metric) # V⋅V⁻¹
Vᵢₜ = 1.00033 [V⋅m⁻¹]/[V⋅m⁻¹] International -> Metric
julia> boltzmann(International) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹Ωᵢₜ⋅Vᵢₜ⁻²2⁴5³ = 1.38042119247(42) × 10⁻²³ [J⋅K⁻¹] International
julia> planckreduced(International) # J⋅s⋅rad⁻¹
𝘩⋅Ωᵢₜ⋅Vᵢₜ⁻²τ⁻¹ = 1.0543978133151816×10⁻³⁴ [J⋅s] International
julia> lightspeed(International) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] International
julia> vacuumpermeability(International) # H⋅m⁻¹
Ωᵢₜ⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2560153338456637×10⁻⁶ [H⋅m⁻¹] International
julia> electronmass(International) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²Ωᵢₜ⋅Vᵢₜ⁻²2 = 9.1078806534(28) × 10⁻³¹ [kg] International
julia> molarmass(International) # kg⋅mol⁻¹
Ωᵢₜ⋅Vᵢₜ⁻²2⁻³5⁻³ = 0.0009998350000179567 [kg⋅mol⁻¹] International
julia> luminousefficacy(International) # lm⋅W⁻¹
Kcd⋅Ωᵢₜ⁻¹Vᵢₜ² = 683.1324069249656 [lm⋅W⁻¹] International
MeasureSystems.InternationalMean
— Constant
InternationalMean = ElectricSystem(Metric,1.00049,1.00034)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
International UnitSystem
with mean
measurements of Ωᵢₜ
and
Vᵢₜ
.
julia> resistance(InternationalMean,Metric) # Ω⋅Ω⁻¹
1.00049 = 1.00049 [kg⋅m⋅s⁻²C⁻²]/[kg⋅m⋅s⁻²C⁻²] InternationalMean -> Metric
julia> electricpotential(InternationalMean,Metric) # V⋅V⁻¹
1.00034 = 1.00034 [V⋅m⁻¹]/[V⋅m⁻¹] InternationalMean -> Metric
julia> boltzmann(InternationalMean) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³/1.0001900224889804 = 1.38038669501(42) × 10⁻²³ [J⋅K⁻¹] InternationalMean
julia> planckreduced(InternationalMean) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹/1.0001900224889804 = 1.0543714633563797×10⁻³⁴ [J⋅s] InternationalMean
julia> lightspeed(InternationalMean) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] InternationalMean
julia> vacuumpermeability(InternationalMean) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷/1.00049 = 1.2560216108466022×10⁻⁶ [H⋅m⁻¹] InternationalMean
julia> electronmass(InternationalMean) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2/1.0001900224889804 = 9.1076530427(28) × 10⁻³¹ [kg] InternationalMean
julia> molarmass(InternationalMean) # kg⋅mol⁻¹
2⁻³5⁻³/1.0001900224889804 = 0.0009998100136127059 [kg⋅mol⁻¹] InternationalMean
julia> luminousefficacy(International) # lm⋅W⁻¹
Kcd⋅Ωᵢₜ⁻¹Vᵢₜ² = 683.1324069249656 [lm⋅W⁻¹] International
Electromagnetic CGS Systems
Alternatives to the SI unit system are the
centimetre-gram-second variants, where the constants are
rescaled with centi*meter
and
milli
kilogram units along with introduction
of additional rationalization
and
lorentz
constants or electromagnetic
units.
MeasureSystems.EMU
— Constant
EMU = GaussSystem(Metric,𝟏,𝟐*τ)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L¹ᐟ², Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Centimetre-gram-second UnitSystem
variant based on EMU
(non-rationalized).
julia> boltzmann(EMU) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] EMU
julia> planckreduced(EMU) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] EMU
julia> lightspeed(EMU) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] EMU
julia> vacuumpermeability(EMU) # abH⋅cm⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> electronmass(EMU) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] EMU
julia> molarmass(EMU) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] EMU
julia> luminousefficacy(EMU) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.830196900900899×10⁻⁵ [lm⋅s⋅erg⁻¹] EMU
julia> rationalization(EMU)
τ⋅2 = 12.566370614359172 [𝟙] EMU
MeasureSystems.ESU
— Constant
ESU = GaussSystem(Metric,(𝟏𝟎*𝘤)^-2,𝟐*τ)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L³ᐟ²T⁻¹, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Centimetre-gram-second UnitSystem
variant based on ESU
(non-rationalized).
julia> boltzmann(ESU) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] ESU
julia> planckreduced(ESU) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] ESU
julia> lightspeed(ESU) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] ESU
julia> vacuumpermeability(ESU) # statH⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
julia> electronmass(ESU) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] ESU
julia> molarmass(ESU) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] ESU
julia> luminousefficacy(ESU) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.830196900900899×10⁻⁵ [lm⋅s⋅erg⁻¹] ESU
julia> rationalization(ESU)
τ⋅2 = 12.566370614359172 [𝟙] ESU
MeasureSystems.Gauss
— Constant
Gauss = GaussSystem(Metric,𝟏,𝟐*τ,𝟏𝟎^-2/𝘤)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L³ᐟ²T⁻¹, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=LT⁻¹
Centimetre-gram-second UnitSystem
variant CGS
(Gauss-Lorentz,
non-rationalized).
julia> boltzmann(Gauss) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] Gauss
julia> planckreduced(Gauss) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] Gauss
julia> lightspeed(Gauss) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] Gauss
julia> vacuumpermeability(Gauss) # statH⋅cm⁻¹
𝟏 = 1.0 [𝟙] Gauss
julia> electronmass(Gauss) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] Gauss
julia> molarmass(Gauss) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] Gauss
julia> luminousefficacy(Gauss) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.830196900900899×10⁻⁵ [lm⋅s⋅erg⁻¹] Gauss
julia> rationalization(Gauss)
τ⋅2 = 12.566370614359172 [𝟙] Gauss
julia> lorentz(Gauss)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] Gauss
MeasureSystems.LorentzHeaviside
— Constant
LorentzHeaviside = GaussSystem(Metric,𝟏,𝟏,centi/𝘤)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L³ᐟ²T⁻¹, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=LT⁻¹
Centimetre-gram-second UnitSystem
variant HLU
(Heaviside-Lorentz,
rationalized).
julia> boltzmann(LorentzHeaviside) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] LorentzHeaviside
julia> planckreduced(LorentzHeaviside) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] LorentzHeaviside
julia> lightspeed(LorentzHeaviside) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] LorentzHeaviside
julia> vacuumpermeability(HLU) # hlH⋅cm⁻¹
𝟏 = 1.0 [𝟙] LorentzHeaviside
julia> electronmass(LorentzHeaviside) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] LorentzHeaviside
julia> molarmass(LorentzHeaviside) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] LorentzHeaviside
julia> luminousefficacy(LorentzHeaviside) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.830196900900899×10⁻⁵ [lm⋅s⋅erg⁻¹] LorentzHeaviside
julia> rationalization(LorentzHeaviside)
𝟏 = 1.0 [𝟙] LorentzHeaviside
julia> lorentz(LorentzHeaviside)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] LorentzHeaviside
There are multiple choices of elctromagnetic units for
these variants based on electromagnetic units,
electrostatic units, Gaussian non-rationalized units, and
Lorentz-Heaviside rationalized units. Note that
CGS
is an alias for the Gauss
system.
Modified (Entropy) Unit Systems
Most other un-natural unit systems are derived from the
construction above by rescaling time
,
length
, mass
,
temperature
, and gravity
; which
results in modified entropy constants:
MeasureSystems.Gravitational
— Constant
Gravitational = EntropySystem(Metric,𝟏,𝟏,g₀)
F=F, M=FL⁻¹T², L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Standard Gravitational
system based
on hyl
and kilopond
units.
julia> boltzmann(Gravitational) # kgf⋅m⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹2⁴5³ = 1.40787016925(43) × 10⁻²⁴ [kgf⋅m⋅K⁻¹] Gravitational
julia> planckreduced(Gravitational) # kgf⋅m⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹τ⁻¹ = 1.0753639802033891×10⁻³⁵ [kgf⋅m⋅s] Gravitational
julia> lightspeed(Gravitational) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Gravitational
julia> vacuumpermeability(Gravitational) # H⋅m⁻¹
g₀⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2814131853751459×10⁻⁷ [kgf⋅s²C⁻²] Gravitational
julia> electronmass(Gravitational) # hyl
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀⁻¹2 = 9.2889862507(28) × 10⁻³² [hyl] Gravitational
julia> molarmass(Gravitational) # hyl⋅mol⁻¹
g₀⁻¹2⁻³5⁻³ = 0.00010197162129779284 [hyl⋅mol⁻¹] Gravitational
julia> luminousefficacy(Gravitational) # lm⋅s⋅m⁻¹⋅kgf⁻¹
Kcd⋅g₀ = 6698.135043821981 [kgf⁻¹m⁻¹s⋅lm] Gravitational
MeasureSystems.MTS
— Constant
MTS = EntropySystem(SI2019,𝟏,𝟏,kilo)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Metre-tonne-second UnitSystem
variant
of Metric
system.
julia> boltzmann(MTS) # kJ⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 1.38064899953(43) × 10⁻²⁶ [t⋅m²s⁻²K⁻¹] MTS
julia> planckreduced(MTS) # kJ⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁻³5⁻³ = 1.0545718176461566×10⁻³⁷ [t⋅m²s⁻¹] MTS
julia> lightspeed(MTS) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] MTS
julia> vacuumpermeability(MTS) # kH⋅m⁻¹
τ⋅2⁻⁹5⁻¹⁰ = 1.2566370614359174×10⁻⁹ [t⋅m⋅C⁻²] MTS
julia> electronmass(MTS) # t
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁻²5⁻³ = 9.1093837016(28) × 10⁻³⁴ [t] MTS
julia> molarmass(MTS) # t⋅mol⁻¹
2⁻⁶5⁻⁶ = 1.0×10⁻⁶ [t⋅mol⁻¹] MTS
julia> luminousefficacy(MTS) # lm⋅kW⁻¹
Kcd⋅2³5³ = 683019.6900900899 [t⁻¹m⁻²s³lm] MTS
MeasureSystems.KKH
— Constant
KKH = EntropySystem(Metric,HOUR,kilo,𝟏)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Kilometer-kilogram-hour UnitSystem
variant of Metric
system.
julia> boltzmann(KKH) # kg⋅km²⋅h⁻²⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁶3⁴5 = 1.78932110338(55) × 10⁻²² [kg⋅km²h⁻²K⁻¹] KKH
julia> planckreduced(KKH) # kg⋅km²⋅h⁻¹
𝘩⋅τ⁻¹2⁻²3²5⁻⁴ = 3.7964585435261634×10⁻³⁷ [kg⋅km²h⁻¹] KKH
julia> lightspeed(KKH) # km⋅hr⁻¹
𝘤⋅2⋅3²5⁻¹ = 1.0792528488×10⁹ [km⋅h⁻¹] KKH
julia> vacuumpermeability(KKH) # kg⋅km⋅C⁻²
τ⋅2⁻⁹5⁻¹⁰ = 1.2566370614359174×10⁻⁹ [kg⋅km⋅C⁻²] KKH
julia> electronmass(KKH) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] KKH
julia> molarmass(KKH) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] KKH
julia> luminousefficacy(KKH) # lm⋅h³⋅kg⁻¹⋅km⁻²
Kcd⋅2⁻⁶3⁻⁶ = 0.014639482383618183 [kg⁻¹km⁻²h³lm] KKH
MeasureSystems.MPH
— Constant
MPH = EntropySystem(FPS,HOUR,mi,𝟏)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Mile-pound-hour specification based on
FPS
absolute
UnitSystem
.
julia> boltzmann(MPH) # lbf⋅mi²⋅hr⁻²⋅F⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻²lb⁻¹2²5⁶11⁻² = 8.4615956484(26) × 10⁻²³ [lb⋅mi²h⁻²°R⁻¹] MPH
julia> planckreduced(MPH) # lbf⋅mi²⋅hr⁻¹⋅rad⁻¹
𝘩⋅ft⁻²lb⁻¹τ⁻¹2⁻⁶11⁻² = 3.2315817800735083×10⁻³⁷ [lb⋅mi²h⁻¹] MPH
julia> lightspeed(MPH) # mi⋅hr⁻¹
𝘤⋅ft⁻¹2⁻¹3⋅5⋅11⁻¹ = 6.706166293843951×10⁸ [mi⋅h⁻¹] MPH
julia> vacuumpermeability(MPH) # lbm⋅mi⋅C⁻²
ft⁻¹lb⁻¹τ⋅2⁻¹¹3⁻¹5⁻⁸11⁻¹ = 1.7214532710813804×10⁻⁹ [lb⋅mi⋅C⁻²] MPH
julia> electronmass(MPH) # lbm
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lb] MPH
julia> molarmass(MPH) # lbm⋅lb-mol⁻¹
𝟏 = 1.0 [lb⋅lb-mol⁻¹] MPH
julia> luminousefficacy(MPH) # lm⋅h³⋅lb⁻¹⋅mi⁻²
Kcd⋅ft²lb⋅2⁻²3⁻⁴5⁻⁴11² = 0.017198446999173198 [lb⁻¹mi⁻²h³lm] MPH
MeasureSystems.Nautical
— Constant
Nautical = EntropySystem(Metric,HOUR,nm,em^3,𝟏,τ*𝟑^3/𝟐^10/𝟓^12,milli)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Nautical miles, kilo-earthgram, hour specification
based on Meridian
definition.
julia> greatcircle(Nautical) # nm
2⁵3³5² = 21600.0 [nm] Nautical
julia> boltzmann(Nautical) # keg⋅nm²⋅hr⁻²⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁵2⁴⁹3¹⁰5³² = 5.180046618(26) × 10⁻²³ [keg⋅nm²h⁻²K⁻¹] Nautical
julia> planckreduced(Nautical) # keg⋅nm²⋅hr⁻¹⋅rad⁻¹
𝘩⋅g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁶2⁴¹3⁸5²⁷ = 1.0990666907(55) × 10⁻³⁷ [keg⋅nm²h⁻¹] Nautical
julia> lightspeed(Nautical) # nm⋅hr⁻¹
𝘤⋅g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹3⁵5⁴ = 5.8195383759(58) × 10⁸ [nm⋅h⁻¹] Nautical
julia> vacuumpermeability(Nautical) # keg⋅nm⋅eC⁻²
τ⋅2⁻¹⁰3³5⁻¹² = 6.785840131753953×10⁻¹⁰ [keg⋅nm⋅eC⁻²] Nautical
julia> electronmass(Nautical) # keg
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀³ᐟ²GME⁻³ᐟ²τ⁻³2²⁸5²¹ = 9.069925385(27) × 10⁻³¹ [keg] Nautical
julia> molarmass(Nautical) # keg⋅eg-mol⁻¹
2⁻³5⁻³ = 0.001 [keg⋅eg-mol⁻¹] Nautical
julia> luminousefficacy(Nautical) # lm⋅h³⋅keg⁻¹⋅nm⁻²
Kcd⋅g₀⁻⁵ᐟ²GME⁵ᐟ²τ⁵2⁻⁴⁹3⁻¹²5⁻³¹ = 0.05056853095(25) [keg⁻¹nm⁻²h³lm] Nautical
MeasureSystems.Meridian
— Constant
Meridian = EntropySystem(Metric,𝟏,em,em^3,𝟏,τ/𝟐^6/𝟓^7,milli)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Modern ideal Meridian
system defined
by France's original earthmeter
definition.
julia> greatcircle(Meridian) # em
2⁹5⁷ = 4.0×10⁷ [em] Meridian
julia> boltzmann(Meridian) # eJ⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁵2⁴⁹5³⁸ = 1.3706960050(69) × 10⁻²³ [eJ⋅K⁻¹] Meridian
julia> planckreduced(Meridian) # eJ⋅s⋅rad⁻¹
𝘩⋅g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁶2⁴⁵5³⁵ = 1.0469694890(53) × 10⁻³⁴ [eJ⋅s] Meridian
julia> lightspeed(Meridian) # em⋅s⁻¹
𝘤⋅g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹5⁷ = 2.9935896996(3) × 10⁸ [em⋅s⁻¹] Meridian
julia> vacuumpermeability(Meridian) # kegf⋅s²⋅eC⁻²
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [eH⋅em⁻¹] Meridian
julia> electronmass(Meridian) # keg
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀³ᐟ²GME⁻³ᐟ²τ⁻³2²⁸5²¹ = 9.069925385(27) × 10⁻³¹ [keg] Meridian
julia> molarmass(Meridian) # keg⋅eg-mol⁻¹
2⁻³5⁻³ = 0.001 [keg⋅eg-mol⁻¹] Meridian
julia> luminousefficacy(Meridian) # lm⋅W⁻¹
Kcd⋅g₀⁻⁵ᐟ²GME⁵ᐟ²τ⁵2⁻⁴⁵5⁻³⁵ = 687.9792808(35) [lm⋅eW⁻¹] Meridian
Foot-Pound-Second-Rankine
In Britain and the United States an English
system of engineering units was commonly used.
MeasureSystems.FPS
— Constant
FPS = RankineSystem(Metric,ft,lb)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Absolute English UnitSystem
based on
the foot, pound, second, and poundal.
julia> boltzmann(FPS) # ft⋅pdl⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻²lb⁻¹2⁴3⁻²5⁴ = 1.82018324169(56) × 10⁻²² [lb⋅ft²s⁻²°R⁻¹] FPS
julia> planckreduced(FPS) # ft⋅pdl⋅s⋅rad⁻¹
𝘩⋅ft⁻²lb⁻¹τ⁻¹ = 2.5025369304889247×10⁻³³ [lb⋅ft²s⁻¹] FPS
julia> lightspeed(FPS) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] FPS
julia> vacuumpermeability(FPS) # lb⋅ft⋅C⁻²
ft⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 9.089273271309687×10⁻⁶ [lb⋅ft⋅C⁻²] FPS
julia> electronmass(FPS) # lb
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lb] FPS
julia> molarmass(FPS) # lb⋅lb-mol⁻¹
𝟏 = 1.0 [lb⋅lb-mol⁻¹] FPS
julia> luminousefficacy(FPS) # lm⋅s³⋅lb⁻¹⋅ft⁻²
Kcd⋅ft²lb = 28.78252493663283 [lb⁻¹ft⁻²s³lm] FPS
MeasureSystems.IPS
— Constant
IPS = RankineSystem(Metric,ft/𝟐^2/𝟑,lb*g₀*𝟐^2*𝟑/ft)
F=F, M=FL⁻¹T², L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
British Gravitational UnitSystem
historically used in the United States of
America.
julia> boltzmann(IPS) # in⋅lb⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁶3⁻¹5⁴ = 6.7887629566(21) × 10⁻²³ [lb⋅in⋅°R⁻¹] IPS
julia> planckreduced(IPS) # in⋅lb⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹2²3 = 9.333747076683978×10⁻³⁴ [lb⋅in⋅s] IPS
julia> lightspeed(IPS) # in⋅s⁻¹
𝘤⋅ft⁻¹2²3 = 1.1802852677165354×10¹⁰ [in⋅s⁻¹] IPS
julia> vacuumpermeability(IPS) # slinch⋅in⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.8250324964133447×10⁻⁷ [lb⋅s²C⁻²] IPS
julia> electronmass(IPS) # slinch
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀⁻¹ft⋅lb⁻¹2⁻¹3⁻¹ = 5.2015921425(16) × 10⁻³³ [slinch] IPS
julia> molarmass(IPS) # slinch⋅slinch-mol⁻¹
𝟏 = 1.0 [slinch-slinch-mol⁻¹] IPS
julia> luminousefficacy(IPS) # lm⋅s⋅in⁻¹⋅lb⁻¹
Kcd⋅g₀⋅ft⋅lb⋅2⁻²3⁻¹ = 77.17086290732456 [lb⁻¹in⁻¹s⋅lm] IPS
MeasureSystems.British
— Constant
British = RankineSystem(Metric,ft,slug)
F=F, M=FL⁻¹T², L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
British Gravitational UnitSystem
historically used by Britain and United States.
julia> boltzmann(British) # ft⋅lb⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6573024638(17) × 10⁻²⁴ [lb⋅ft⋅°R⁻¹] British
julia> planckreduced(British) # ft⋅lb⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹ = 7.778122563903315×10⁻³⁵ [lb⋅ft⋅s] British
julia> lightspeed(British) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] British
julia> vacuumpermeability(British) # slug⋅ft⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.8250324964133447×10⁻⁷ [lb⋅s²C⁻²] British
julia> electronmass(British) # slugs
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀⁻¹ft⋅lb⁻¹2 = 6.2419105710(19) × 10⁻³² [slug] British
julia> molarmass(British) # slug⋅slug-mol⁻¹
𝟏 = 1.0 [slug⋅slug-mol⁻¹] British
julia> luminousefficacy(British) # lm⋅s⋅ft⁻¹⋅lb⁻¹
Kcd⋅g₀⋅ft⋅lb = 926.0503548878947 [lb⁻¹ft⁻¹s⋅lm] British
MeasureSystems.English
— Constant
English = RankineSystem(Metric,ft,lb,g₀/ft)
F=F, M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=A, R=𝟙, C=𝟙
English Engineering UnitSystem
historically used in the United States of
America.
julia> boltzmann(English) # ft⋅lbf⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6573024638(17) × 10⁻²⁴ [lbf⋅ft⋅°R⁻¹] English
julia> planckreduced(English) # ft⋅lbf⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹ = 7.778122563903315×10⁻³⁵ [lbf⋅ft⋅s⋅rad⁻¹] English
julia> lightspeed(English) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] English
julia> vacuumpermeability(English) # lbm⋅ft⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.8250324964133447×10⁻⁷ [lbf⋅s²C⁻²] English
julia> electronmass(English) # lbm
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lbm] English
julia> molarmass(English) # lbm⋅lb-mol⁻¹
𝟏 = 1.0 [lbm⋅lb-mol⁻¹] English
julia> luminousefficacy(English) # lm⋅s⋅ft⁻¹⋅lbf⁻¹
Kcd⋅g₀⋅ft⋅lb = 926.0503548878947 [lbf⁻¹ft⁻¹s⋅lm] English
julia> gravity(English) # lbm⋅ft⋅lbf⁻¹⋅s⁻²
g₀⋅ft⁻¹ = 32.17404855643044 [lbf⁻¹lbm⋅ft⋅s⁻²] English
MeasureSystems.Survey
— Constant
Survey = RankineSystem(Metric,ftUS,lb,g₀/ftUS)
F=F, M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=A, R=𝟙, C=𝟙
English Engineering UnitSystem
based
on the geophysical US survey foot (1200/3937).
julia> boltzmann(Survey) # ftUS⋅lbf⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ftUS⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6572911492(17) × 10⁻²⁴ [lbf⋅ft⋅°R⁻¹] Survey
julia> planckreduced(Survey) # ftUS⋅lbf⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ftUS⁻¹lb⁻¹τ⁻¹ = 7.77810700765819×10⁻³⁵ [lbf⋅ft⋅s⋅rad⁻¹] Survey
julia> lightspeed(Survey) # ftUS⋅s⁻¹
𝘤⋅ftUS⁻¹ = 9.835690892883334×10⁸ [ft⋅s⁻¹] Survey
julia> vacuumpermeability(Survey) # lbm⋅ftUS⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.8250324964133447×10⁻⁷ [lbf⋅s²C⁻²] Survey
julia> electronmass(Survey) # lbm
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lbm] Survey
julia> molarmass(Survey) # lbm⋅lb-mol⁻¹
𝟏 = 1.0 [lbm⋅lb-mol⁻¹] Survey
julia> luminousefficacy(Survey) # lm⋅s⋅ft⁻¹⋅lbf⁻¹
Kcd⋅g₀⋅ftUS⋅lb = 926.0522069923087 [lbf⁻¹ft⁻¹s⋅lm] Survey
julia> gravity(Survey) # lbm⋅ftUS⋅lbf⁻¹⋅s⁻²
g₀⋅ftUS⁻¹ = 32.17398420833334 [lbf⁻¹lbm⋅ft⋅s⁻²] Survey
MeasureSystems.FFF
— Constant
FFF = EntropySystem(Metric,𝟐*𝟕*DAY,fur,𝟐*𝟑^2*𝟓*lb,°R,0,𝟏)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Furlong–firkin–fortnight FFF
is a
humorous UnitSystem
based on unusal
impractical units.
julia> boltzmann(FFF) # fir⋅fur²⋅ftn⁻²⋅F⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻²lb⁻¹2¹⁵5⁵7²11⁻² = 6.7931043720(21) × 10⁻¹⁸ [fir⋅fur²ftn⁻²°R⁻¹] FFF
julia> planckreduced(FFF) # fir⋅fur²⋅ftn⁻¹⋅rad⁻¹
𝘩⋅ft⁻²lb⁻¹τ⁻¹2³3⁻¹5⁻¹7⋅11⁻² = 7.721326066522302×10⁻³⁵ [fir⋅fur²ftn⁻¹] FFF
julia> lightspeed(FFF) # fur⋅ftn⁻¹
𝘤⋅ft⁻¹2⁶3²5⋅7⋅11⁻¹ = 1.8026174997852542×10¹² [fur⋅ftn⁻¹] FFF
julia> vacuumpermeability(FFF) # fir⋅fur⋅Inf⁻²
𝟏/Inf = 0.0 [fir⋅fur⋅Inf⁻²] FFF
julia> electronmass(FFF) # fir
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹3⁻²5⁻¹ = 2.23141704217(68) × 10⁻³² [fir] FFF
julia> molarmass(FFF) # fir⋅fir-mol⁻¹
𝟏 = 1.0 [fir⋅fir-mol⁻¹] FFF
julia> luminousefficacy(FFF) # lm⋅ftn³⋅fir⁻¹⋅fur⁻²
Kcd⋅ft²lb⋅2⁻¹⁹3⁻⁵5⁻³7⁻³11² = 6.375788993269436×10⁻¹⁰ [fir⁻¹fur⁻²ftn³lm] FFF
Astronomical Unit Systems
The International Astronomical Union (IAU) units are based on the solar mass, distance from the sun to the earth, and the length of a terrestrial day.
MeasureSystems.IAU
— Constant
IAU☉ = EntropySystem(Metric,DAY,au,GM☉/G)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Solar UnitSystem
defined by
International Astronomical Union and
solarmass
.
julia> boltzmann(IAU) # M⊙⋅au²⋅D⁻²⋅K⁻¹
kB⋅NA⋅𝘩²R∞⋅α⁻²μₑᵤ⁻¹au⁻⁵kG⁻²mP⁻²τ⁻³2⁴⁶3²⁰5¹⁷ = 2.316083(51) × 10⁻⁶⁶ [M☉⋅au²D⁻²K⁻¹] IAU☉
julia> planckreduced(IAU) # M⊙⋅au²⋅D⁻¹⋅rad⁻¹
𝘩²𝘤⋅au⁻⁵kG⁻²mP⁻²τ⁻⁴2³⁵3¹⁷5¹² = 2.047544(45) × 10⁻⁸² [M☉⋅au²D⁻¹] IAU☉
julia> lightspeed(IAU) # au⋅D⁻¹
𝘤⋅au⁻¹2⁷3³5² = 173.1446326742(35) [au⋅D⁻¹] IAU☉
julia> vacuumpermeability(IAU) # M⊙⋅au²⋅C⁻²
𝘩⋅𝘤⋅au⁻⁴kG⁻²mP⁻²τ⁻²2²²3¹⁴5³ = 4.224533(93) × 10⁻⁴⁸ [M☉⋅au⋅C⁻²] IAU☉
julia> electronmass(IAU) # M⊙
𝘩²R∞⋅α⁻²au⁻³kG⁻²mP⁻²τ⁻³2²⁹3¹⁴5¹⁰ = 4.58124(10) × 10⁻⁶¹ [M☉] IAU☉
julia> molarmass(IAU) # M☉⋅mol⁻¹
𝘩⋅𝘤⋅au⁻³kG⁻²mP⁻²τ⁻³2²⁵3¹⁴5⁷ = 5.02915(11) × 10⁻³⁴ [M☉⋅mol⁻¹] IAU☉
julia> luminousefficacy(IAU) # lm⋅D³⋅M☉⁻¹⋅au⁻²
𝘩⁻¹𝘤⁻¹Kcd⋅au⁵kG²mP²τ³2⁻⁴⁹3⁻²³5⁻¹⁶ = 4.71247(10) × 10⁴⁰ [M☉⁻¹au⁻²D³lm] IAU☉
julia> gaussgravitation(IAU) # D⁻¹
kG⋅τ⋅2⁻⁷3⁻⁴5⁻³ = 0.017202098964713464 [D⁻¹] IAU☉
MeasureSystems.IAUE
— Constant
IAUE = EntropySystem(Metric,DAY,LD,GME/G)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Astronomical (Earth) UnitSystem
defined by lunardistance
around the
earthmass
.
julia> boltzmann(IAUE) # ME⋅LD²⋅D⁻²⋅K⁻¹
kB⋅NA⋅𝘩²R∞⋅α⁻²μₑᵤ⁻¹mP⁻²GME⁻¹τ⁻¹2¹²5/202692169 = 1.167923(26) × 10⁻⁵⁵ [ME⋅LD²D⁻²K⁻¹] IAUE
julia> planckreduced(IAUE) # ME⋅LD²⋅D⁻¹⋅rad⁻¹
𝘩²𝘤⋅mP⁻²GME⁻¹τ⁻²2⋅3⁻³5⁻⁴/202692169 = 1.032508(23) × 10⁻⁷¹ [ME⋅LD²D⁻¹] IAUE
julia> lightspeed(IAUE) # LD⋅D⁻¹
𝘤⋅2⁴5⁻¹/14237 = 67383.2876027253 [LD⋅D⁻¹] IAUE
julia> vacuumpermeability(IAUE) # ME⋅LD²⋅C⁻²
𝘩⋅𝘤⋅mP⁻²GME⁻¹2⁻⁹3⁻³5⁻¹⁰/14237 = 5.47389(12) × 10⁻⁴⁰ [ME⋅LD⋅C⁻²] IAUE
julia> electronmass(IAUE) # ME
𝘩²R∞⋅α⁻²mP⁻²GME⁻¹τ⁻¹2 = 1.525306(34) × 10⁻⁵⁵ [ME] IAUE
julia> molarmass(IAUE) # ME⋅mol⁻¹
𝘩⋅𝘤⋅mP⁻²GME⁻¹τ⁻¹2⁻³5⁻³ = 1.674434(37) × 10⁻²⁸ [ME⋅mol⁻¹] IAUE
julia> luminousefficacy(IAUE) # lm⋅D³⋅ME⁻¹⋅LD⁻²
𝘩⁻¹𝘤⁻¹Kcd⋅mP²GME⋅τ⋅2⁻¹⁵3⁻³⋅202692169 = 9.34520(21) × 10²⁹ [ME⁻¹LD⁻²D³lm] IAUE
julia> turn(IAU)/gaussianmonth(IAU) # D⁻¹
GME¹ᐟ²2⁵ᐟ²3⁻³ᐟ²5⁻⁵ᐟ²/1.6987431854323947×10⁶ = 0.22888074402(23) [D⁻¹] IAU☉
MeasureSystems.IAUJ
— Constant
IAUJ = EntropySystem(Metric,DAY,JD,GMJ/G)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Astronomical (Jupiter) UnitSystem
defined by jupiterdistance
around the
solarmass
.
julia> boltzmann(IAUJ) # MJ⋅JD²⋅D⁻²⋅K⁻¹
kB⋅NA⋅𝘩²R∞⋅α⁻²μₑᵤ⁻¹mP⁻²GMJ⁻¹τ⁻¹2⁶3⁴5⁻⁵/67336617049 = 8.95968(20) × 10⁻⁶⁵ [MJ⋅JD²D⁻²K⁻¹] IAUJ
julia> planckreduced(IAUJ) # MJ⋅JD²⋅D⁻¹⋅rad⁻¹
𝘩²𝘤⋅mP⁻²GMJ⁻¹τ⁻²2⁻⁵3⋅5⁻¹⁰/67336617049 = 7.92084(17) × 10⁻⁸¹ [MJ⋅JD²D⁻¹] IAUJ
julia> lightspeed(IAUJ) # JD⋅D⁻¹
𝘤⋅2⋅3²5⁻⁴/259493 = 33.272661653300865 [JD⋅D⁻¹] IAUJ
julia> vacuumpermeability(IAUJ) # MJ⋅JD²⋅C⁻²
𝘩⋅𝘤⋅mP⁻²GMJ⁻¹2⁻¹²3⁻¹5⁻¹³/259493 = 8.50430(19) × 10⁻⁴⁶ [MJ⋅JD⋅C⁻²] IAUJ
julia> electronmass(IAUJ) # MJ
𝘩²R∞⋅α⁻²mP⁻²GMJ⁻¹τ⁻¹2 = 4.79915(11) × 10⁻⁵⁸ [MJ] IAUJ
julia> molarmass(IAUJ) # MJ⋅mol⁻¹
𝘩⋅𝘤⋅mP⁻²GMJ⁻¹τ⁻¹2⁻³5⁻³ = 5.26836(12) × 10⁻³¹ [MJ⋅mol⁻¹] IAUJ
julia> luminousefficacy(IAUJ) # lm⋅D³⋅MJ⁻¹⋅JD⁻²
𝘩⁻¹𝘤⁻¹Kcd⋅mP²GMJ⋅τ⋅2⁻⁹3⁻⁷5⁶⋅67336617049 = 1.218177(27) × 10³⁹ [MJ⁻¹JD⁻²D³lm] IAUJ
julia> sqrt(gravitation(IAUJ)*solarmass(IAUJ)/jupiterdistance(IAUJ)^3) # D⁻¹
au³ᐟ²kG⋅τ⋅2⁻¹⁶3⁻¹¹ᐟ²5⁻¹²/1.3218691602384917×10⁸ = 0.001449102839405(44) [D⁻¹] IAUJ
MeasureSystems.Hubble
— Constant
Hubble = AstronomicalSystem(Metric,th,𝘤*th,mₑ)
F=T⁻¹, M=𝟙, L=T, T, Q, Θ=𝟙, N=𝟙, J=T⁻¹, A=𝟙, R=𝟙, C=𝟙
Hubble UnitSystem
defined by
hubble
parameter.
julia> boltzmann(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> planckreduced(Hubble)
𝘤⁻¹R∞⁻¹α²H0⋅au⁻¹2⁻¹¹3⁻⁴5⁻⁶ = 2.824(18) × 10⁻³⁹ [T] Hubble
julia> lightspeed(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> vacuumpermeability(Hubble)
τ⋅2 = 12.566370614359172 [TQ⁻²] Hubble
julia> electronmass(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> molarmass(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> luminousefficacy(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> hubble(Hubble)
𝟏 = 1.0 [T⁻¹] Hubble
julia> cosmological(Hubble)
ΩΛ⋅3 = 2.067(17) [T⁻²] Hubble
MeasureSystems.Cosmological
— Constant
Cosmological = AstronomicalSystem(Metric,lc/𝘤,lc,mc)
F=MT⁻¹, M, L=T, T, Q, Θ=M, N=M, J, A=𝟙, R=𝟙, C=𝟙
Cosmological scale UnitSystem
defined
by darkenergydensity
.
julia> boltzmann(Cosmological)
𝟏 = 1.0 [𝟙] Cosmological
julia> planckreduced(Cosmological)
𝘩²𝘤⁻⁴ΩΛ⋅H0²au⁻²mP⁻²2⁻²⁰3⁻⁷5⁻¹² = 2.888(43) × 10⁻¹²² [MT] Cosmological
julia> lightspeed(Cosmological)
𝟏 = 1.0 [𝟙] Cosmological
julia> vacuumpermeability(Cosmological)
τ⋅2 = 12.566370614359172 [MTQ⁻²] Cosmological
julia> electronmass(Cosmological)
𝘩²𝘤⁻³R∞⋅α⁻²ΩΛ¹ᐟ²H0⋅au⁻¹mP⁻²τ¹ᐟ²2⁻⁸3⁻⁷ᐟ²5⁻⁶ = 3.566(26) × 10⁻⁸³ [M] Cosmological
julia> molarmass(Cosmological)
𝟏 = 1.0 [𝟙] Cosmological
julia> luminousefficacy(Cosmological)
𝟏 = 1.0 [M⁻¹TJ] Cosmological
julia> hubble(Cosmological)
ΩΛ⁻¹ᐟ²τ¹ᐟ²2⋅3⁻¹ᐟ² = 3.487(14) [T⁻¹] Cosmological
julia> cosmological(Cosmological)
τ⋅2² = 25.132741228718345 [T⁻²] Cosmological
MeasureSystems.CosmologicalQuantum
— Constant
CosmologicalQuantum = AstronomicalSystem(Metric,tcq,lcq,mcq)
F=M², M, L=M⁻¹, T=M⁻¹, Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Cosmological quantum scale UnitSystem
defined by darkenergydensity
.
julia> boltzmann(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> planckreduced(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> lightspeed(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> vacuumpermeability(CosmologicalQuantum)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁼²] CosmologicalQuantum
julia> electronmass(CosmologicalQuantum)
𝘩¹ᐟ²R∞⋅α⁻²ΩΛ⁻¹ᐟ⁴H0⁻¹ᐟ²au¹ᐟ²mP⁻¹ᐟ²τ¹ᐟ⁴2¹³ᐟ²3⁷ᐟ⁴5³ = 2.2733(84) × 10⁸ [M] CosmologicalQuantum
julia> molarmass(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> luminousefficacy(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
Natural Unit Systems
With the introduction of the planckmass
a
set of natural atomic unit systems can be derived in terms
of the gravitational coupling constant.
\[\alpha_G = \left(\frac{m_e}{m_P}\right)^2, \qquad \tilde k_B = 1, \qquad (\tilde M_u = 1, \quad \tilde \lambda = 1, \quad \tilde\alpha_L = 1)\]
julia> αG # (mₑ/mP)^2
𝘩²𝘤⁻²mP⁻²R∞²α⁻⁴2² = 1.75181e-45 ± 3.9e-50
Some of the notable variants include
Planck ::UnitSystem{1,1,1,1,√(4π*αG)}
PlanckGauss ::UnitSystem{1,1,1,4π,√αG}
Stoney ::UnitSystem{1,1/α,1,4π,√(αG/α)}
Hartree ::UnitSystem{1,1,1/α,4π*α^2,1}
Rydberg ::UnitSystem{1,1,2/,π*α^2,1/2}
Schrodinger ::UnitSystem{1,1,1/α,4π*α^2,√(αG/α)}
Electronic ::UnitSystem{1,1/α,1,4π,1}
Natural ::UnitSystem{1,1,1,1,1}
NaturalGauss ::UnitSystem{1,1,1,4π,1}
QCD ::UnitSystem{1,1,1,1,1/μₚₑ}
QCDGauss ::UnitSystem{1,1,1,4π,1/μₚₑ}
QCDoriginal ::UnitSystem{1,1,1,4π*α,1/μₚₑ}
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = 1, \qquad \tilde\mu_0 = 1, \qquad \tilde m_e = \sqrt{4\pi\alpha_G}\]
MeasureSystems.Planck
— Constant
Planck = UnitSystem(𝟏,𝟏,𝟏,𝟏,√(𝟐*τ*αG))
F=M², M, L=M⁻¹, T=M⁻¹, Q=𝟙, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Planck UnitSystem
with the
electronmass
value √(4π*αG)
using gravitational coupling.
julia> boltzmann(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> planckreduced(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> lightspeed(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> vacuumpermeability(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> electronmass(Planck)
𝘩⋅𝘤⁻¹R∞⋅α⁻²mP⁻¹τ¹ᐟ²2³ᐟ² = 1.483708(16) × 10⁻²² [M] Planck
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = 1, \qquad \tilde\mu_0 = 4\pi, \qquad \tilde m_e = \sqrt{4\pi\alpha_G}\]
MeasureSystems.PlanckGauss
— Constant
PlanckGauss = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ,√αG)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Planck (Gauss) UnitSystem
with
permeability
of 4π
and
electronmass
coupling
√αG
.
julia> boltzmann(PlanckGauss)
𝟏 = 1.0 [𝟙] PlanckGauss
julia> planckreduced(PlanckGauss)
𝟏 = 1.0 [𝟙] PlanckGauss
julia> lightspeed(PlanckGauss)
𝟏 = 1.0 [𝟙] PlanckGauss
julia> vacuumpermeability(PlanckGauss)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁻²] PlanckGauss
julia> electronmass(PlanckGauss)
𝘩⋅𝘤⁻¹R∞⋅α⁻²mP⁻¹2 = 4.185463(46) × 10⁻²³ [mP] PlanckGauss
The well known PlanckGauss
values for
length
, time
,
mass
, and temperature
are:
julia> length(PlanckGauss,SI2019) # ℓP
𝘩⋅𝘤⁻¹mP⁻¹τ⁻¹ = 1.616255(18) × 10⁻³⁵ [m]/[mP⁻¹] PlanckGauss -> SI2019
julia> time(PlanckGauss,SI2019) # tP
𝘩⋅𝘤⁻²mP⁻¹τ⁻¹ = 5.391247(59) × 10⁻⁴⁴ [s]/[mP⁻¹] PlanckGauss -> SI2019
julia> mass(PlanckGauss,SI2019) # mP
mP = 2.176434(24) × 10⁻⁸ [kg]/[mP] PlanckGauss -> SI2019
julia> temperature(PlanckGauss,SI2019) # TP
kB⁻¹𝘤²mP = 1.416784(16) × 10³² [K]/[mP] PlanckGauss -> SI2019
\[\tilde k_B = 1, \qquad \tilde\hbar = \frac{1}{\alpha}, \qquad \tilde c = 1, \qquad \tilde\mu_0 = 4\pi, \qquad \tilde m_e = \sqrt{\frac{\alpha_G}{\alpha}}\]
MeasureSystems.Stoney
— Constant
Stoney = UnitSystem(𝟏,𝟏/α,𝟏,𝟐*τ,√(αG/α))
F=MT⁻¹, M, L=T, T, Q, Θ=M, N=M, J, A=𝟙, R=𝟙, C=𝟙
Stoney UnitSystem
with
permeability
of 4π
and
electronmass
coupling
√(αG/α)
.
julia> boltzmann(Stoney)
𝟏 = 1.0 [𝟙] Stoney
julia> planckreduced(Stoney)
α⁻¹ = 137.035999084(21) [MT] Stoney
julia> lightspeed(Stoney)
𝟏 = 1.0 [𝟙] Stoney
julia> vacuumpermeability(Stoney)
τ⋅2 = 12.566370614359172 [MTQ⁻²] Stoney
julia> electronmass(Stoney)
𝘩⋅𝘤⁻¹R∞⋅α⁻⁵ᐟ²mP⁻¹2 = 4.899602(54) × 10⁻²² [M] Stoney
The well known Stoney
values for
length
, time
,
mass
, and charge
are:
julia> length(Stoney,SI2019) # lS
𝘩⋅𝘤⁻¹α¹ᐟ²mP⁻¹τ⁻¹ = 1.380679(15) × 10⁻³⁶ [m]/[T] Stoney -> SI2019
julia> time(Stoney,SI2019) # tS
𝘩⋅𝘤⁻²α¹ᐟ²mP⁻¹τ⁻¹ = 4.605448(51) × 10⁻⁴⁵ [s]/[T] Stoney -> SI2019
julia> mass(Stoney,SI2019) # mS
α¹ᐟ²mP = 1.859209(21) × 10⁻⁹ [kg]/[M] Stoney -> SI2019
julia> charge(Stoney,SI2019) # qS
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] Stoney -> SI2019
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = \frac{1}{\alpha}, \qquad \tilde\mu_0 = 4\pi\alpha^2, \qquad \tilde m_e = 1\]
MeasureSystems.Hartree
— Constant
Hartree = UnitSystem(𝟏,𝟏,𝟏/α,𝟐*τ*α^2,𝟏)
F=L⁻³, M=𝟙, L=L, T=L², Q=Q, Θ=L⁻², N=𝟙, J=L⁻⁴, A=𝟙, R=𝟙, C=𝟙
Hartree atomic UnitSystem
based on
bohr
radius and
elementarycharge
scale.
julia> boltzmann(Hartree)
𝟏 = 1.0 [𝟙] Hartree
julia> planckreduced(Hartree)
𝟏 = 1.0 [𝟙] Hartree
julia> lightspeed(Hartree)
α⁻¹ = 137.035999084(21) [a₀⁻¹] Hartree
julia> vacuumpermeability(Hartree)
α²τ⋅2 = 0.00066917625662(21) [a₀⋅𝘦⁻²] Hartree
julia> electronmass(Hartree)
𝟏 = 1.0 [𝟙] Hartree
The well known Hartree
atomic unit
values for length
, time
,
mass
, and charge
are:
julia> length(Hartree,SI2019) # lA
R∞⁻¹α⋅τ⁻¹2⁻¹ = 5.29177210902(81) × 10⁻¹¹ [m]/[a₀] Hartree -> SI2019
julia> time(Hartree,SI2019) # tA
𝘤⁻¹R∞⁻¹τ⁻¹2⁻¹ = 2.4188843265857(46) × 10⁻¹⁷ [s]/[a₀²] Hartree -> SI2019
julia> mass(Hartree,SI2019) # mA
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg]/[𝟙] Hartree -> SI2019
julia> charge(Hartree,SI2019) # qA
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] Hartree -> SI2019
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = \frac{2}{\alpha}, \qquad \tilde\mu_0 = \pi\alpha^2, \qquad \tilde m_e = \frac{1}{2}\]
MeasureSystems.Rydberg
— Constant
Rydberg = UnitSystem(𝟏,𝟏,𝟐/α,τ/𝟐*α^2,𝟏/𝟐)
F=MLT⁻², M, L, T, Q, Θ=T⁻¹, N=M, J=T², A=𝟙, R=𝟙, C=𝟙
Rydberg UnitSystem
with
lightspeed
of 𝟐/α
and
permeability
of π*α^2
.
julia> boltzmann(Rydberg)
𝟏 = 1.0 [ML²T⁻¹] Rydberg
julia> planckreduced(Rydberg)
𝟏 = 1.0 [ML²T⁻¹] Rydberg
julia> lightspeed(Rydberg)
α⁻¹2 = 274.071998168(42) [LT⁻¹] Rydberg
julia> vacuumpermeability(Rydberg)
α²τ⋅2⁻¹ = 0.000167294064155(51) [MLQ⁻²] Rydberg
julia> electronmass(Rydberg)
2⁻¹ = 0.5 [M] Rydberg
The well known Rydberg
atomic unit
values for length
, time
,
mass
, and charge
are:
julia> length(Rydberg,SI2019) # lR
R∞⁻¹α⋅τ⁻¹2⁻¹ = 5.29177210902(81) × 10⁻¹¹ [m]/[a₀] Rydberg -> SI2019
julia> time(Rydberg,SI2019) # tR
𝘤⁻¹R∞⁻¹τ⁻¹ = 4.8377686531713(93) × 10⁻¹⁷ [s]/[T] Rydberg -> SI2019
julia> mass(Rydberg,SI2019) # mR
𝘩⋅𝘤⁻¹R∞⋅α⁻²2² = 1.82187674031(56) × 10⁻³⁰ [kg]/[M] Rydberg -> SI2019
julia> charge(Rydberg,SI2019) # qR
𝘦⋅2⁻¹ᐟ² = 1.1329099625600371×10⁻¹⁹ [C]/[Q] Rydberg -> SI2019
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = \frac{1}{\alpha}, \qquad \tilde\mu_0 = 4\pi\alpha^2, \qquad \tilde m_e = \sqrt{\frac{\alpha_G}{\alpha}}\]
MeasureSystems.Schrodinger
— Constant
Schrodinger = UnitSystem(𝟏,𝟏,𝟏/α,𝟐*τ*α^2,√(αG/α))
F=MLT⁻², M, L, T, Q, Θ=T⁻¹, N=M, J=T², A=𝟙, R=𝟙, C=𝟙
Schrodinger UnitSystem
with
permeability
of 4π/αinv^2
and electronmass
of
√(αG*αinv)
.
julia> boltzmann(Schrodinger)
𝟏 = 1.0 [ML²T⁻¹] Schrodinger
julia> planckreduced(Schrodinger)
𝟏 = 1.0 [ML²T⁻¹] Schrodinger
julia> lightspeed(Schrodinger)
α⁻¹ = 137.035999084(21) [LT⁻¹] Schrodinger
julia> vacuumpermeability(Schrodinger)
α²τ⋅2 = 0.00066917625662(21) [MLQ⁻²] Schrodinger
julia> electronmass(Schrodinger)
𝘩⋅𝘤⁻¹R∞⋅α⁻⁵ᐟ²mP⁻¹2 = 4.899602(54) × 10⁻²² [M] Schrodinger
\[\tilde k_B = 1, \qquad \tilde\hbar = \frac{1}{\alpha}, \qquad \tilde c = 1, \qquad \tilde\mu_0 = 4\pi, \qquad \tilde m_e = 1\]
MeasureSystems.Electronic
— Constant
Electronic = UnitSystem(𝟏,𝟏/α,𝟏,𝟐*τ,𝟏)
F=T⁻¹, M=𝟙, L=T, T, Q, Θ=𝟙, N=𝟙, J=T⁻¹, A=𝟙, R=𝟙, C=𝟙
Electronic UnitSystem
with
planckreduced
of 1/α
and
permeability
of 4π
.
julia> boltzmann(Electronic)
𝟏 = 1.0 [𝟙] Electronic
julia> planckreduced(Electronic)
α⁻¹ = 137.035999084(21) [T] Electronic
julia> lightspeed(Electronic)
𝟏 = 1.0 [𝟙] Electronic
julia> vacuumpermeability(Electronic)
τ⋅2 = 12.566370614359172 [TQ⁻²] Electronic
julia> electronmass(Electronic)
𝟏 = 1.0 [𝟙] Electronic
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = 1, \qquad \tilde\mu_0 = 1, \qquad \tilde m_e = 1\]
MeasureSystems.Natural
— Constant
Natural = UnitSystem(𝟏,𝟏,𝟏,𝟏,𝟏)
F=𝟙, M=𝟙, L=𝟙, T=𝟙, Q=𝟙, Θ=𝟙, N=𝟙, J=𝟙, A=𝟙, R=𝟙, C=𝟙
Natural UnitSystem
with all primary
constants having unit value.
julia> boltzmann(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> planckreduced(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> lightspeed(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> vacuumpermeability(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> electronmass(Natural)
𝟏 = 1.0 [𝟙] Natural
The well known Natural
values for
length
, time
,
mass
, and charge
are:
julia> length(Natural,SI2019)
R∞⁻¹α²τ⁻¹2⁻¹ = 3.8615926796(12) × 10⁻¹³ [m]/[𝟙] Natural -> SI2019
julia> time(Natural,SI2019)
𝘤⁻¹R∞⁻¹α²τ⁻¹2⁻¹ = 1.28808866819(39) × 10⁻²¹ [s]/[𝟙] Natural -> SI2019
julia> mass(Natural,SI2019)
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg]/[𝟙] Natural -> SI2019
julia> charge(Natural,SI2019)
𝘦⋅α⁻¹ᐟ²τ⁻¹ᐟ²2⁻¹ᐟ² = 5.29081768990(41) × 10⁻¹⁹ [C]/[𝟙] Natural -> SI2019
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = 1, \qquad \tilde\mu_0 = 4\pi, \qquad \tilde m_e = 1\]
MeasureSystems.NaturalGauss
— Constant
NaturalGauss = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ,𝟏)
F=𝟙, M=𝟙, L=𝟙, T=𝟙, Q=Q, Θ=𝟙, N=𝟙, J=𝟙, A=𝟙, R=𝟙, C=𝟙
Natural (Gauss) UnitSystem
with the
Gaussian permeability
value of
4π
.
julia> boltzmann(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
julia> planckreduced(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
julia> lightspeed(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
julia> vacuumpermeability(NaturalGauss)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁻²] NaturalGauss
julia> electronmass(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = 1, \qquad \tilde\mu_0 = 1, \qquad \tilde m_e = \frac{1}{\mu_{pe}} = \frac{m_e}{m_p}\]
MeasureSystems.QCD
— Constant
QCD = UnitSystem(𝟏,𝟏,𝟏,𝟏,𝟏/μₚₑ)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=𝟙, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Qunatum chromodynamics UnitSystem
based on the protonmass
scale.
julia> boltzmann(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> planckreduced(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> lightspeed(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> vacuumpermeability(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> electronmass(QCD)
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCD
The well known QCD
values for
length
, time
,
mass
, and charge
are:
julia> length(QCD,SI2019) # lQCD
R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 2.10308910335(66) × 10⁻¹⁶ [m]/[mₚ⁻¹] QCD -> SI2019
julia> time(QCD,SI2019) # tQCD
𝘤⁻¹R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 7.0151501388(22) × 10⁻²⁵ [s]/[mₚ⁻¹] QCD -> SI2019
julia> mass(QCD,SI2019) # mQCD
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg]/[mₚ] QCD -> SI2019
julia> charge(QCD,SI2019) # qQCD
𝘦⋅α⁻¹ᐟ²τ⁻¹ᐟ²2⁻¹ᐟ² = 5.29081768990(41) × 10⁻¹⁹ [C]/[𝟙] QCD -> SI2019
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = 1, \qquad \tilde\mu_0 = 4\pi, \qquad \tilde m_e = \frac{1}{\mu_{pe}} = \frac{m_e}{m_p}\]
MeasureSystems.QCDGauss
— Constant
QCDGauss = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ,𝟏/μₚₑ)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Qunatum chromodynamics (Gauss)
UnitSystem
based on the
protonmass
scale.
julia> boltzmann(QCDGauss)
𝟏 = 1.0 [𝟙] QCDGauss
julia> planckreduced(QCDGauss)
𝟏 = 1.0 [𝟙] QCDGauss
julia> lightspeed(QCDGauss)
𝟏 = 1.0 [𝟙] QCDGauss
julia> vacuumpermeability(QCDGauss)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁻²] QCDGauss
julia> electronmass(QCDGauss)
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCDGauss
The well known QCDGauss
values for
length
, time
,
mass
, and charge
are:
julia> length(QCDGauss,SI2019) # lQCD
R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 2.10308910335(66) × 10⁻¹⁶ [m]/[mₚ⁻¹] QCDGauss -> SI2019
julia> time(QCDGauss,SI2019) # tQCD
𝘤⁻¹R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 7.0151501388(22) × 10⁻²⁵ [s]/[mₚ⁻¹] QCDGauss -> SI2019
julia> mass(QCDGauss,SI2019) # mQCD
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg]/[mₚ] QCDGauss -> SI2019
julia> charge(QCDGauss,SI2019) # qQCD
𝘦⋅α⁻¹ᐟ² = 1.87554603778(14) × 10⁻¹⁸ [C]/[𝘦ₙ] QCDGauss -> SI2019
\[\tilde k_B = 1, \qquad \tilde\hbar = 1, \qquad \tilde c = 1, \qquad \tilde\mu_0 = 4\pi\alpha, \qquad \tilde m_e = \frac{1}{\mu_{pe}} = \frac{m_e}{m_p}\]
MeasureSystems.QCDoriginal
— Constant
QCDoriginal = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ*α,𝟏/μₚₑ)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Qunatum chromodynamics (original)
UnitSystem
scaled by
protonmass
and
elementarycharge
.
julia> boltzmann(QCDoriginal)
𝟏 = 1.0 [𝟙] QCDoriginal
julia> planckreduced(QCDoriginal)
𝟏 = 1.0 [𝟙] QCDoriginal
julia> lightspeed(QCDoriginal)
𝟏 = 1.0 [𝟙] QCDoriginal
julia> vacuumpermeability(QCDoriginal)
α⋅τ⋅2 = 0.091701236889(14) [𝘦⁻²] QCDoriginal
julia> electronmass(QCDoriginal)
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCDoriginal
The well known QCDoriginal
values for
length
, time
,
mass
, and charge
are:
julia> length(QCDoriginal,SI2019) # lQCD
R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 2.10308910335(66) × 10⁻¹⁶ [m]/[mₚ⁻¹] QCDoriginal -> SI2019
julia> time(QCDoriginal,SI2019) # tQCD
𝘤⁻¹R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 7.0151501388(22) × 10⁻²⁵ [s]/[mₚ⁻¹] QCDoriginal -> SI2019
julia> mass(QCDoriginal,SI2019) # mQCD
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg]/[mₚ] QCDoriginal -> SI2019
julia> charge(QCDoriginal,SI2019) # qQCD
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] QCDoriginal -> SI2019
UnitSystem Index
-
MeasureSystems.British
-
MeasureSystems.CODATA
-
MeasureSystems.Conventional
-
MeasureSystems.Cosmological
-
MeasureSystems.CosmologicalQuantum
-
MeasureSystems.EMU
-
MeasureSystems.ESU
-
MeasureSystems.Electronic
-
MeasureSystems.Engineering
-
MeasureSystems.English
-
MeasureSystems.FFF
-
MeasureSystems.FPS
-
MeasureSystems.Gauss
-
MeasureSystems.Gravitational
-
MeasureSystems.Hartree
-
MeasureSystems.Hubble
-
MeasureSystems.IAU
-
MeasureSystems.IAUE
-
MeasureSystems.IAUJ
-
MeasureSystems.IPS
-
MeasureSystems.International
-
MeasureSystems.InternationalMean
-
MeasureSystems.KKH
-
MeasureSystems.LorentzHeaviside
-
MeasureSystems.MPH
-
MeasureSystems.MTS
-
MeasureSystems.Meridian
-
MeasureSystems.Metric
-
MeasureSystems.Natural
-
MeasureSystems.NaturalGauss
-
MeasureSystems.Nautical
-
MeasureSystems.Planck
-
MeasureSystems.PlanckGauss
-
MeasureSystems.QCD
-
MeasureSystems.QCDGauss
-
MeasureSystems.QCDoriginal
-
MeasureSystems.Rydberg
-
MeasureSystems.SI1976
-
MeasureSystems.SI2019
-
MeasureSystems.Schrodinger
-
MeasureSystems.Stoney
-
MeasureSystems.Survey